munuSSM: A python']python package for the μ-from-ν Supersymmetric Standard Model

被引:5
|
作者
Biekoetter, Thomas [1 ]
机构
[1] DESY, Notkestr 85, D-22607 Hamburg, Germany
关键词
Supersymmetry; Higgs physics; Collider phenomenology; HIGGS-BOSON MASSES; PRECISE PREDICTION; EXCLUSION BOUNDS; MSSM; PROGRAM; DECAYS; SUSY; PHENOMENOLOGY; EXTENSIONS; TEVATRON;
D O I
10.1016/j.cpc.2021.107935
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present the public python package munuSSM that can be used for phenomenological studies in the context of the mu-from-nu Supersymmetric Standard Model (mu nu SSM). The code incorporates the radiative corrections to the neutral scalar potential at full one-loop level. Sizable higher-order corrections, required for an accurate prediction of the SM-like Higgs-boson mass, can be consistently included via an automated link to the public code FeynHiggs. In addition, a calculation of effective couplings and branching ratios of the neutral and charged Higgs bosons is implemented. This provides the required ingredients to check a benchmark point against collider constraints from searches for additional Higgs bosons via an interface to the public code HiggsBounds. At the same time, the signal rates of the SM-like Higgs boson can be tested applying the experimental results implemented in the public code HiggsSignals. The python package is constructed in a flexible and modular way, such that it provides a simple framework that can be extended by the user with further calculations of observables and constraints on the model parameters. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] salmon: A Symbolic Linear Regression Package for Python']Python
    Boyd, Alex
    Sun, Dennis L.
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 108 (08): : 1 - 26
  • [42] AccuCalc: A Python']Python Package for Accuracy Calculation in GWAS
    Biova, Jana
    Dietz, Nicholas
    Chan, Yen On
    Joshi, Trupti
    Bilyeu, Kristin
    Skrabisova, Maria
    GENES, 2023, 14 (01)
  • [43] A variable selection package driving Netica with Python']Python
    Beuzen, Tomas
    Simmons, Joshua
    ENVIRONMENTAL MODELLING & SOFTWARE, 2019, 115 : 1 - 5
  • [44] NetPlotBrain: A Python']Python package for visualizing networks and brains
    Fanton, Silvia
    Thompson, William Hedley
    NETWORK NEUROSCIENCE, 2023, 7 (02) : 461 - 477
  • [45] CoClust: A Python']Python Package for Co-Clustering
    Role, Francois
    Morbieu, Stanislas
    Nadif, Mohamed
    JOURNAL OF STATISTICAL SOFTWARE, 2019, 88 (07): : 1 - 29
  • [46] AMEP: The active matter evaluation package for Python']Python
    Hecht, Lukas
    Dormann, Kay-Robert
    Spanheimer, Kai Luca
    Ebrahimi, Mahdieh
    Cordts, Malte
    Mandal, Suvendu
    Mukhopadhyay, Aritra K.
    Liebchen, Benno
    COMPUTER PHYSICS COMMUNICATIONS, 2025, 309
  • [47] LENSINGGW: a PYTHON']PYTHON package for lensing of gravitational waves
    Pagano, G.
    Hannuksela, O. A.
    Li, T. G. F.
    ASTRONOMY & ASTROPHYSICS, 2020, 643 (643)
  • [48] DarsakX: A Python']Python package for designing and analyzing imaging of
    Tiwari, N. K.
    Vadawale, S. V.
    Mithun, N. P. S.
    Vaishnava, C. S.
    Saiguhan, B.
    ASTRONOMY AND COMPUTING, 2024, 47
  • [49] semopy: A Python']Python Package for Structural Equation Modeling
    Igolkina, Anna A.
    Meshcheryakov, Georgy
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2020, 27 (06) : 952 - 963
  • [50] MDiGest: A Python']Python package for describing allostery from molecular dynamics simulations
    Maschietto, Federica
    Allen, Brandon
    Kyro, Gregory W.
    Batista, Victor S.
    JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (21):