Recursive Renyi's Entropy estimator for adaptive filtering

被引:0
|
作者
Xu, JW [1 ]
Erdogmus, D [1 ]
Ozturk, MC [1 ]
Principe, JC [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Comp Neuroengn Lab, Gainesville, FL 32611 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently we have proposed a recursive estimator for Renyi's quadratic entropy. This estimator can converge to accurate results for stationary signals or track the changing entropy of nonstationary signals. In this paper, we demonstrate the application of the recursive entropy estimator to supervised and unsupervised training of linear and nonlinear adaptive systems. The simulations suggest a smooth and fast convergence to the optimal solution with a reduced complexity in the algorithm compared to a batch training approach using the same entropy-based criteria. The presented approach also allows on-line information theoretic adaptation of model parameters.
引用
收藏
页码:134 / 137
页数:4
相关论文
共 50 条
  • [1] A recursive Renyi's entropy estimator
    Erdogmus, D
    Principe, JC
    Kim, SP
    Sanchez, JC
    [J]. NEURAL NETWORKS FOR SIGNAL PROCESSING XII, PROCEEDINGS, 2002, : 209 - 217
  • [2] Order statistics based estimator for Renyi's entropy
    Hegde, A
    Lan, T
    Erdogmus, D
    [J]. 2005 IEEE Workshop on Machine Learning for Signal Processing (MLSP), 2005, : 335 - 339
  • [3] Adaptive filtering based on recursive minimum error entropy criterion
    Wang, Gang
    Peng, Bei
    Feng, Zhenyu
    Yang, Xinyue
    Deng, Jing
    Wang, Nianci
    [J]. SIGNAL PROCESSING, 2021, 179
  • [4] Adaptive Kalman Filtering with Recursive Noise Estimator for Integrated SINS/DVL Systems
    Gao, Wei
    Li, Jingchun
    Zhou, Guangtao
    Li, Qian
    [J]. JOURNAL OF NAVIGATION, 2015, 68 (01): : 142 - 161
  • [5] Mixture quantized error entropy for recursive least squares adaptive filtering
    He, Jiacheng
    Wang, Gang
    Peng, Bei
    Sun, Qi
    Feng, Zhenyu
    Zhang, Kun
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2022, 359 (03): : 1362 - 1381
  • [6] Empirical Lipschitz Constants for the Renyi Entropy Maximum Likelihood Estimator
    Konstantinides, John M.
    Andreadis, Ioannis
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (06) : 3540 - 3554
  • [7] Adaptive active noise control based on Renyi's quadratic entropy
    School of Automation, Beijing Institute of Technology, Beijing 100081, China
    [J]. Kong Zhi Li Lun Yu Ying Yong, 2009, 12 (1401-1404):
  • [8] Recursive adaptive Wiener filtering
    Adriaanse, R
    Jernigan, ME
    [J]. 1997 CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CONFERENCE PROCEEDINGS, VOLS I AND II: ENGINEERING INNOVATION: VOYAGE OF DISCOVERY, 1997, : 496 - 499
  • [9] Observability of Renyi's entropy
    Jizba, P
    Arimitsu, T
    [J]. PHYSICAL REVIEW E, 2004, 69 (02): : 026128 - 1
  • [10] Recursive inverse adaptive filtering algorithm
    Ahmad, Mohammad Shukri
    Kukrer, Osman
    Hocanin, Aykut
    [J]. DIGITAL SIGNAL PROCESSING, 2011, 21 (04) : 491 - 496