Derivatives of Ribosome-Inhibiting Antibiotic Chloramphenicol Inhibit the Biosynthesis of Bacterial Cell Wall

被引:21
|
作者
Zada, Sivan Louzoun [1 ]
Green, Keith D. [2 ]
Shrestha, Sanjib Sanjib K. [2 ]
Herzog, Ido M. [1 ]
Garneau-Tsodikova, Sylvie [2 ]
Fridman, Micha [1 ]
机构
[1] Tel Aviv Univ, Sch Chem, Raymond & Beverly Sackler Fac Exact Sci, IL-6997801 Tel Aviv, Israel
[2] Univ Kentucky, Dept Pharmaceut Sci, Lexington, KY 40536 USA
来源
ACS INFECTIOUS DISEASES | 2018年 / 4卷 / 07期
基金
美国国家卫生研究院; 以色列科学基金会;
关键词
antibiotics; bacterial resistance; chloramphenicol; cell envelope; in vitro translation; PEPTIDYL TRANSFERASE CENTER; ESCHERICHIA-COLI; ANTIBACTERIAL ACTIVITY; CATIONIC AMPHIPHILES; TOBRAMYCIN ANALOGS; RESISTANCE; FLORFENICOL; MEMBRANE; THIAMPHENICOL; INACTIVATION;
D O I
10.1021/acsinfecdis.8b00078
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Here, we describe the preparation and evaluation of alpha,beta-unsaturated carbonyl derivatives of the bacterial translation inhibiting antibiotic chloramphenicol (CAM). Compared to the parent antibiotic, two compounds containing alpha,beta-unsaturated ketones (1 and 4) displayed a broader spectrum of activity against a panel of Gram-positive pathogens with a minimum inhibitory concentration range of 2-32 mu g/mL. Interestingly, unlike the parent CAM, these compounds do not inhibit bacterial translation. Microscopic evidence and metabolic labeling of a cell wall peptidoglycan suggested that compounds 1 and 4 caused extensive damage to the envelope of Staphylococcus aureus cells by inhibition of the early stage of cell wall peptidoglycan biosynthesis. Unlike the effect of membrane-disrupting antimicrobial cationic amphiphiles, these compounds did not rapidly permeabilize the bacterial membrane. Like the parent antibiotic CAM, compounds 1 and 4 had a bacteriostatic effect on S. aureus. Both compounds 1 and 4 were cytotoxic to immortalized nucleated mammalian cells; however, neither caused measurable membrane damage to mammalian red blood cells. These data suggest that the reported CAM-derived antimicrobial agents offer a new molecular scaffold for development of novel bacterial cell wall biosynthesis inhibiting antibiotics.
引用
收藏
页码:1121 / 1129
页数:17
相关论文
共 50 条
  • [21] Taking shape: control of bacterial cell wall biosynthesis
    Stewart, GC
    MOLECULAR MICROBIOLOGY, 2005, 57 (05) : 1177 - 1181
  • [22] BIOSYNTHESIS OF THE BACTERIAL CELL WALL - ISOLATION OF A NEW INTERMEDIATE
    STROMINGER, JL
    THRENN, RH
    NATHENSON, S
    JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 1958, 122 (01): : A73 - A73
  • [23] Coordination of bacterial cell wall and outer membrane biosynthesis
    Katherine R. Hummels
    Samuel P. Berry
    Zhaoqi Li
    Atsushi Taguchi
    Joseph K. Min
    Suzanne Walker
    Debora S. Marks
    Thomas G. Bernhardt
    Nature, 2023, 615 : 300 - 304
  • [25] An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway
    Schneider, Tanja
    Sahl, Hans-Georg
    INTERNATIONAL JOURNAL OF MEDICAL MICROBIOLOGY, 2010, 300 (2-3) : 161 - 169
  • [26] Biosynthesis and Mechanism of Action of the Cell Wall Targeting Antibiotic Hypeptin
    Wirtz, Daniel A.
    Ludwig, Kevin C.
    Arts, Melina
    Marx, Carina E.
    Krannich, Sebastian
    Barac, Paul
    Kehraus, Stefan
    Josten, Michaele
    Henrichfreise, Beate
    Mueller, Anna
    Koenig, Gabriele M.
    Peoples, Aaron J.
    Nitti, Anthony
    Spoering, Amy L.
    Ling, Losee L.
    Lewis, Kim
    Cruesemann, Max
    Schneider, Tanja
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (24) : 13579 - 13586
  • [27] Synthesis and in vitro enzyme activity of aza, oxa and thia derivatives of bacterial cell wall biosynthesis intermediates
    Cox, RJ
    Wang, PSH
    JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 1, 2001, (17): : 2022 - 2034
  • [28] ROLE OF CELL-WALL LIPID IN BIOSYNTHESIS OF BACTERIAL LIPOPOLYSACCHARIDE
    ROTHFIELD, L
    HORECKER, BL
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1964, 52 (04) : 939 - &
  • [29] On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis
    Kawai, Yoshikazu
    Kawai, Maki
    Mackenzie, Eilidh Sohini
    Dashti, Yousef
    Kepplinger, Bernhard
    Waldron, Kevin John
    Errington, Jeff
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [30] On the mechanisms of lysis triggered by perturbations of bacterial cell wall biosynthesis
    Yoshikazu Kawai
    Maki Kawai
    Eilidh Sohini Mackenzie
    Yousef Dashti
    Bernhard Kepplinger
    Kevin John Waldron
    Jeff Errington
    Nature Communications, 14