Evaluation of multiscale morphological segmentation of multispectral imagery for land cover classification

被引:0
|
作者
Li, PJ [1 ]
Xiao, XB [1 ]
机构
[1] Peking Univ, Inst Remote Sensing, Beijing 100871, Peoples R China
来源
IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET | 2004年
关键词
watershed transformation; component-wise; segmentation; classification; multiscale;
D O I
暂无
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper investigates segmentation of multispectral images using multiscale watershed transformation for land cover classification with SPOT 5 multispectral data. The multiscale gradient operator was computed separately for each band, and then resulting multiple gradient images were combined b,averaging of magnitude of the gradient components to create a single-value p-adient image. The gradient image was filtered to eliminate local minima. The watershed transformation was used for segmentation of the filtered gradient image. The results indicate that the use of multiscale gradients for watershed segmentation could overcome the over-segmentation effect and achieve more accurate segmentation result. The incorporation of contextual information from multiscale morphological se-mentation in image classification substantially improves the classification accuracy, compared to pixel-wise classification.
引用
收藏
页码:2676 / 2679
页数:4
相关论文
共 50 条
  • [21] Land cover segmentation of aerial imagery using SegNet
    Lee, S.
    Park, S.
    Son, S.
    Han, J.
    Kim, S.
    Kim, J.
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS X, 2019, 11156
  • [22] Land Use/Land Cover Classification of Google Earth Imagery
    Sowmya, D. R.
    Hegde, Vishwas S.
    Suhas, J.
    Hegdekatte, Raghavendra V.
    Shenoy, P. Deepa
    Venugopal, K. R.
    2017 IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2017), 2017, : 10 - 13
  • [23] Tri-lateral filter on multispectral imagery for classification and segmentation
    Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, United States
    Proc SPIE Int Soc Opt Eng,
  • [24] Tri-lateral Filter on Multispectral Imagery for Classification and Segmentation
    Sun, Weihua
    Messinger, David W.
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XVII, 2011, 8048
  • [25] Effective Key Parameter Determination for an Automatic Approach to Land Cover Classification Based on Multispectral Remote Sensing Imagery
    Wang, Yong
    Jiang, Dong
    Zhuang, Dafang
    Huang, Yaohuan
    Wang, Wei
    Yu, Xinfang
    PLOS ONE, 2013, 8 (10):
  • [26] Hydrologic land cover classification mapping at local level with the combined use of ASTER multispectral imagery and GPS measurements
    Chrysoulakis, N
    Keramitsoglou, I
    Cartalis, C
    REMOTE SENSING FOR ENVIRONMENTAL MONITORING, GIS APPLICATIONS, AND GEOLOGY III, 2004, 5239 : 532 - 541
  • [27] A Multiscale Random Forest Kernel for Land Cover Classification
    Zafari, Azar
    Zurita-Milla, Raul
    Izquierdo-Verdiguier, Emma
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 2842 - 2852
  • [28] Can segmentation evaluation metric be used as an indicator of land cover classification accuracy?
    Lenarcic, Andreja Svab
    Duric, Natasa
    Cotar, Klemen
    Ritlop, Klemen
    Ostir, Kristof
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [29] On Satellite Imagery of Land Cover Classification for Agricultural Development
    Alzahrani, Ali
    Bhuiyan, Al-Amin
    INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2023, 20 (01) : 9 - 18
  • [30] Land cover classification from SAR/IFSAR imagery
    Lefevre, RJ
    Jaroszewski, SJ
    Pieramico, AF
    Corbeil, AF
    Fox, BJ
    Jackson, C
    RECORD OF THE IEEE 2000 INTERNATIONAL RADAR CONFERENCE, 2000, : 160 - 165