THE FIRST PASSAGE TIME DENSITY OF BROWNIAN MOTION AND THE HEAT EQUATION WITH DIRICHLET BOUNDARY CONDITION IN TIME DEPENDENT DOMAINS

被引:0
|
作者
Lee, J. M.
机构
关键词
first passage time; Brownian motion; heat equation; Dirichlet boundary condition;
D O I
10.1137/S0040585X97T990307
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837-849] it is proved that we can have a continuous first-passage-time density function of one-dimensional standard Brownian motion when the boundary is Holder continuous with exponent greater than 1/2. For the purpose of extending the results of [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837-849] to multidimensional domains, we show that there exists a continuous first-passage-time density function of standard d-dimensional Brownian motion in moving boundaries in R-d, d >= 2, under a C-3-diffeomorphism. Similarly as in [J. Lee, ALEA Lat. Am. J. Probab. Math. Stat., 15 (2018), pp. 837-849], by using a property of local time of standard d-dimensional Brownian motion and the heat equation with Dirichlet boundary condition, we find a sufficient condition for the existence of the continuous density function.
引用
收藏
页码:142 / 159
页数:18
相关论文
共 50 条