Research on Object Tracking Algorithm via Adaptive Multi-Feature Fusion

被引:0
|
作者
Xia, Runlong [1 ,2 ]
Chen, Yuantao [3 ]
机构
[1] Mt Yuelu Breeding Innovat Ctr, Changsha 410000, Hunan, Peoples R China
[2] Hunan Prov Sci & Technol Affairs Ctr, Changsha 410013, Hunan, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Comp & Commun Engn, Changsha 410114, Hunan, Peoples R China
关键词
object tracking; multi-feature fusion; position filter; adaptive update threshold;
D O I
10.1117/12.2606027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aiming at the existing problems of object tracking in real scenes, such as complex background, illumination changes, fast motion, and object rotation, the paper has proposed an object tracking algorithm via adaptive multi-feature fusion. By extracting the HOG feature of the object and using convolutional neural networks to extract high-level and low-level convolutional features, an adaptive threshold segmentation method has been used to evaluate the effect of each feature, and the weight ratio of feature fusion has been obtained. The response map of each feature has fused according to the weight coefficient, and the new estimated position of the object has been obtained, and the object scale has been calculated by the scale correlation filter, and the object scale has been obtained to complete the object tracking. The experimental results had conducted on the OTB-2013 dataset. The two-layer convolutional feature and the HOG feature are adaptively fused, so that the more discriminative single feature fusion weight is greater, which better expresses the appearance model of the object, and shows strong object tracking accuracy in scenes such as complex background, the disappearance of the object, light change, fast movement, and rotation.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Vehicle tracking based on multi-feature adaptive fusion
    School of Electric Engineering and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    不详
    Nongye Jixie Xuebao, 2013, 4 (33-38):
  • [22] Research on Curb Detection and Tracking Method Based on Adaptive Multi-feature Fusion
    Jiang W.
    Zhou S.
    Wang Q.
    Chen W.
    Chen J.
    Qiche Gongcheng/Automotive Engineering, 2021, 43 (12): : 1762 - 1770
  • [23] Embedded tracking algorithm based on multi-feature crowd fusion and visual object compression
    Zheng Wenyi
    Dong Decun
    EURASIP JOURNAL ON EMBEDDED SYSTEMS, 2016,
  • [24] Object tracking based on multi-feature fusion and motion prediction
    Zhou, Zhiyu
    Luo, Kaikai
    Wang, Yaming
    Zhang, Jianxin
    Journal of Computational Information Systems, 2011, 7 (16): : 5940 - 5947
  • [25] Research on Stereo Matching Algorithm Based on Multi-feature Fusion and Adaptive Aggregation
    Chang, Yawen
    Zhao, Dongqing
    Shan, Yanhu
    Computer Engineering and Applications, 2024, 57 (23) : 219 - 225
  • [26] Research on arrhythmia classification algorithm based on adaptive multi-feature fusion network
    Huang, Mengmeng
    Jiang, Mingfeng
    Li, Yang
    He, Xiaoyu
    Wang, Zefeng
    Wu, Yongquan
    Ke, Wei
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2025, 42 (01): : 49 - 56
  • [27] Anti-Occlusion Visual Tracking Algorithm for UAVs with Multi-Feature Adaptive Fusion
    Qiu, Xiaohong
    Wu, Xin
    Xu, Cong
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2024, 28 (03) : 573 - 585
  • [28] Robust Object Tracking Based on Timed Motion History Image With Multi-feature Adaptive Fusion
    Li, Zhiyong
    Gao, Song
    Nai, Ke
    Zeng, Ying
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 845 - 851
  • [29] Algorithm of Moving Object Detection based on Multi-feature Fusion
    Cao, Jianrong
    Sun, Xuemei
    Zhao, Shusheng
    Wang, Yameng
    Gong, Shulan
    2017 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (IEEE ICIA 2017), 2017, : 931 - 935
  • [30] A Multi-feature Fusion-based Algorithm for Real-time Single Object Tracking
    Yang X.
    Huang Y.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2019, 47 (06): : 1 - 9