Predicting Breast Cancer Malignancy On DCE-MRI Data Using Pre-Trained Convolutional Neural Networks

被引:27
|
作者
Antropova, N.
Huynh, B.
Giger, M.
机构
关键词
D O I
10.1118/1.4955674
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
SUD207B06
引用
收藏
页码:3349 / 3350
页数:2
相关论文
共 50 条
  • [31] Recognizing Malaysia Traffic Signs with Pre-Trained Deep Convolutional Neural Networks
    How, Dickson Neoh Tze
    Sahari, Khairul Salleh Mohamed
    Hou, Yew Cheong
    Basubeit, Omar Gumaan Saleh
    2019 4TH INTERNATIONAL CONFERENCE ON CONTROL, ROBOTICS AND CYBERNETICS (CRC 2019), 2019, : 109 - 113
  • [32] Age Estimation Based on Face Images and Pre-trained Convolutional Neural Networks
    Anand, Abhinav
    Labati, Ruggero Donida
    Genovese, Angelo
    Munoz, Enrique
    Piuri, Vincenzo
    Scotti, Fabio
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017, : 3357 - 3363
  • [33] Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers
    Yang Zhang
    Jeon-Hor Chen
    Yezhi Lin
    Siwa Chan
    Jiejie Zhou
    Daniel Chow
    Peter Chang
    Tiffany Kwong
    Dah-Cherng Yeh
    Xinxin Wang
    Ritesh Parajuli
    Rita S. Mehta
    Meihao Wang
    Min-Ying Su
    European Radiology, 2021, 31 : 2559 - 2567
  • [34] Filter pruning by image channel reduction in pre-trained convolutional neural networks
    Chung, Gi Su
    Won, Chee Sun
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (20) : 30817 - 30826
  • [35] Prediction of breast cancer molecular subtypes on DCE-MRI using convolutional neural network with transfer learning between two centers
    Zhang, Yang
    Chen, Jeon-Hor
    Lin, Yezhi
    Chan, Siwa
    Zhou, Jiejie
    Chow, Daniel
    Chang, Peter
    Kwong, Tiffany
    Yeh, Dah-Cherng
    Wang, Xinxin
    Parajuli, Ritesh
    Mehta, Rita S.
    Wang, Meihao
    Su, Min-Ying
    EUROPEAN RADIOLOGY, 2021, 31 (04) : 2559 - 2567
  • [36] Filter pruning by image channel reduction in pre-trained convolutional neural networks
    Gi Su Chung
    Chee Sun Won
    Multimedia Tools and Applications, 2021, 80 : 30817 - 30826
  • [37] DCE-MRI radiomics features for predicting breast cancer neoadjuvant therapy response
    Kontopodis, E.
    Manikis, G. C.
    Skepasianos, I.
    Tzagkarakis, K.
    Nikiforaki, K.
    Papadakis, G. Z.
    Maris, T. G.
    Papadaki, E.
    Karantanas, A.
    Marias, K.
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 203 - 208
  • [38] Radiomics Based on DCE-MRI for Predicting Response to Neoadjuvant Therapy in Breast Cancer
    Zeng, Qiao
    Xiong, Fei
    Liu, Lan
    Zhong, Linhua
    Cai, Fengqin
    Zeng, Xianjun
    ACADEMIC RADIOLOGY, 2023, 30 : S38 - S49
  • [39] Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5
    Bun Theang Ong
    Komei Sugiura
    Koji Zettsu
    Neural Computing and Applications, 2016, 27 : 1553 - 1566
  • [40] Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5
    Ong, Bun Theang
    Sugiura, Komei
    Zettsu, Koji
    NEURAL COMPUTING & APPLICATIONS, 2016, 27 (06): : 1553 - 1566