Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images

被引:47
|
作者
Sheykhivand, Sobhan [1 ]
Mousavi, Zohreh [2 ]
Mojtahedi, Sina [3 ]
Rezaii, Tohid Yousefi [1 ]
Farzamnia, Ali [4 ]
Meshgini, Saeed [1 ]
Saad, Ismail [4 ]
机构
[1] Univ Tabriz, Fac Elect & Comp Engn, Biomed Engn Dept, Tabriz, Iran
[2] Univ Tabriz, Fac Mech Engn, Dept Mech Engn, Tabriz, Iran
[3] Isik Univ, Fac Engn, Dept Biomed Engn, Istanbul, Turkey
[4] Univ Malaysia Sabah, Fac Engn, Kota Kinabalu, Sabah, Malaysia
关键词
COVID-19; Pneumonia; GANs; X-ray Images; CNN; LSTM; Transfer learning;
D O I
10.1016/j.aej.2021.01.011
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The novel coronavirus (COVID-19) could be described as the greatest human challenge of the 21st century. The development and transmission of the disease have increased mortality in all countries. Therefore, a rapid diagnosis of COVID-19 is necessary to treat and control the disease. In this paper, a new method for the automatic identification of pneumonia (including COVID-19) is presented using a proposed deep neural network. In the proposed method, the chest X-ray images are used to separate 2-4 classes in 7 different and functional scenarios according to healthy, viral, bacterial, and COVID-19 classes. In the proposed architecture, Generative Adversarial Networks (GANs) are used together with a fusion of the deep transfer learning and LSTM networks, without involving feature extraction/selection for classification of pneumonia. We have achieved more than 90% accuracy for all scenarios except one and also achieved 99% accuracy for separating COVID-19 from healthy group. We also compared our deep proposed network with other deep transfer learning networks (including Inception-ResNet V2, Inception V4, VGG16 and MobileNet) that have been recently widely used in pneumonia detection studies. The results based on the proposed network were very promising in terms of accuracy, precision, sensitivity, and specificity compared to the other deep transfer learning approaches. Depending on the high performance of the proposed method, it can be used during the treatment of patients. (C) 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2885 / 2903
页数:19
相关论文
共 50 条
  • [1] Hybrid deep neural network for automatic detection of COVID-19 using chest x-ray images
    Acharya, Upendra Kumar
    Ali, Mohammad Taha
    Ahmed, Mohd Kaif
    Siddiqui, Mohd Tabish
    Gupta, Harsh
    Kumar, Sandeep
    Mishra, Ajey Shakti
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (04) : 1129 - 1143
  • [2] COVID-19 detection using chest X-ray images based on a developed deep neural network
    Mousavi, Zohreh
    Shahini, Nahal
    Sheykhivand, Sobhan
    Mojtahedi, Sina
    Arshadi, Afrooz
    SLAS TECHNOLOGY, 2022, 27 (01): : 63 - 75
  • [3] Detection of COVID-19 Using Deep Convolutional Neural Network on Chest X-Ray (CXR) Images
    Tang, Goon Sheng
    Chow, Li Sze
    Solihin, Mahmud Iwan
    Ramli, Norlisah
    Gowdh, Nadia Fareeda
    Rahmat, Kartini
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [4] Automated COVID-19 detection using Deep Convolutional Neural Network and Chest X-ray Images
    Agrawal, Tarun
    Choudhary, Prakash
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 277 - 281
  • [5] Deep Residual Neural Network for COVID-19 Detection from Chest X-ray Images
    Amirhossein Panahi
    Reza Askari Moghadam
    Mohammadreza Akrami
    Kurosh Madani
    SN Computer Science, 2022, 3 (2)
  • [6] Detection of COVID-19 in Chest X-ray images using Transfer Learning with Deep Convolutional Neural Network
    Vogado, Luis
    Vieira, Pablo
    Neto, Pedro Santos
    Lopes, Lucas
    Silva, Gleison
    Araujo, Flavio
    Veras, Rodrigo
    36TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2021, 2021, : 629 - 636
  • [7] An automatic COVID-19 diagnosis from chest X-ray images using a deep trigonometric convolutional neural network
    Khishe, Mohammad
    IMAGING SCIENCE JOURNAL, 2023, 71 (02): : 128 - 141
  • [8] Deep Learning Algorithms for Automatic COVID-19 Detection on Chest X-Ray Images
    Cannata, Sergio
    Paviglianiti, Annunziata
    Pasero, Eros
    Cirrincione, Giansalvo
    Cirrincione, Maurizio
    IEEE ACCESS, 2022, 10 : 119905 - 119913
  • [9] CoroNet: A deep neural network for detection and diagnosis of COVID-19 from chest x-ray images
    Khan, Asif Iqbal
    Shah, Junaid Latief
    Bhat, Mohammad Mudasir
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2020, 196 (196)
  • [10] Automated detection of COVID-19 cases from chest X-ray images using deep neural network and XGBoost
    Nasiri, H.
    Hasani, S.
    RADIOGRAPHY, 2022, 28 (03) : 732 - 738