An automatic COVID-19 diagnosis from chest X-ray images using a deep trigonometric convolutional neural network

被引:8
|
作者
Khishe, Mohammad [1 ]
机构
[1] Imam Khomeini Marine Sci Univ, Nowshahr, Iran
来源
IMAGING SCIENCE JOURNAL | 2023年 / 71卷 / 02期
关键词
COVID-19; trigonometric function; deep convolutional neural networks; chest X-Rays; metaheuristic algorithms; optimization; diagnostic; image processing; INEQUALITIES; CONCAVITY; BOUNDS;
D O I
10.1080/13682199.2023.2178094
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
With growing demands for diagnosing COVID-19 definite cases, employing radiological images, i.e., the chest X-ray, is becoming challenging. Deep Convolutional Neural Networks (DCNN) propose effective automated models to detect COVID_19 positive cases. In order to improve the total accuracy, this paper proposes using the novel Trigonometric Function (TF) instead of the existing gradient descendent-based training method for training fully connected layers to have a COVID-19 detector with parallel implementation ability. The designed model gets then benchmarked on a verified dataset denominated COVID-Xray-5k. The results get investigated by qualified research with classic DCNN, BWC, and MSAD. The results confirm that the produced detector can present competitive results compared to the benchmark detection models. The paper also examines the class activation map theory to detect the areas probably infected by the Covid-19 virus. As experts confirm, the obtained results get correlated with the clinical recognitions.
引用
收藏
页码:128 / 141
页数:14
相关论文
共 50 条
  • [1] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Abbas, Asmaa
    Abdelsamea, Mohammed M.
    Gaber, Mohamed Medhat
    APPLIED INTELLIGENCE, 2021, 51 (02) : 854 - 864
  • [2] Detection of COVID-19 Using Deep Convolutional Neural Network on Chest X-Ray (CXR) Images
    Tang, Goon Sheng
    Chow, Li Sze
    Solihin, Mahmud Iwan
    Ramli, Norlisah
    Gowdh, Nadia Fareeda
    Rahmat, Kartini
    2021 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2021,
  • [3] Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network
    Asmaa Abbas
    Mohammed M. Abdelsamea
    Mohamed Medhat Gaber
    Applied Intelligence, 2021, 51 : 854 - 864
  • [4] Automated COVID-19 detection using Deep Convolutional Neural Network and Chest X-ray Images
    Agrawal, Tarun
    Choudhary, Prakash
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 277 - 281
  • [5] A Hybrid Convolutional Neural Network Model for Diagnosis of COVID-19 Using Chest X-ray Images
    Kaur, Prabhjot
    Harnal, Shilpi
    Tiwari, Rajeev
    Alharithi, Fahd S.
    Almulihi, Ahmed H.
    Noya, Irene Delgado
    Goyal, Nitin
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (22)
  • [6] Hybrid deep neural network for automatic detection of COVID-19 using chest x-ray images
    Acharya, Upendra Kumar
    Ali, Mohammad Taha
    Ahmed, Mohd Kaif
    Siddiqui, Mohd Tabish
    Gupta, Harsh
    Kumar, Sandeep
    Mishra, Ajey Shakti
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2023, 33 (04) : 1129 - 1143
  • [7] Detection of COVID-19 from Chest X-ray Images Using Deep Convolutional Neural Networks
    Khasawneh, Natheer
    Fraiwan, Mohammad
    Fraiwan, Luay
    Khassawneh, Basheer
    Ibnian, Ali
    SENSORS, 2021, 21 (17)
  • [8] Fast Hybrid Deep Neural Network for Diagnosis of COVID-19 using Chest X-Ray Images
    Ali, Hussein Ahmed
    Zghal, Nadia Smaoui
    Hariri, Walid
    Ben Aissa, Dalenda
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (03) : 553 - 564
  • [9] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Muhab Hariri
    Ercan Avşar
    Network Modeling Analysis in Health Informatics and Bioinformatics, 12
  • [10] COVID-19 and pneumonia diagnosis from chest X-ray images using convolutional neural networks
    Hariri, Muhab
    Avsar, Ercan
    NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2023, 12 (01):