Source detection and background estimation with Bayesian inference

被引:0
|
作者
Guglielmetti, F [1 ]
Fischer, R [1 ]
Voges, W [1 ]
Boese, G [1 ]
Dose, V [1 ]
机构
[1] Max Planck Inst Plasma Phys, Ctr Interdisciplinary Plasma Sci, Garching, Germany
关键词
data analysis; Bayesian inference; background estimation; source detection;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A probabilistic technique for the joint estimation of background and sources in high-energy astrophysics is described. Bayesian inference is applied to gain insight into the coexistence of background and sources through a probabilistic two-component mixture model, which provides consistent uncertainties of background and sources. The present analysis is applied on ROSAT PSPC data in Survey Mode. A background map is modelled using a Thin-Plate spline. Source probability maps are obtained for each pixel (45 arcsec) independently and for larger correlation lengths, revealing faint and extended sources. Source probability maps are combined for two ROSAT PSPC energy bands, hard (0.5-2.0 keV) and soft (0.1-0.5 keV), and compared with the corresponding source probability maps at the broad energy band (0.1-2.4 keV) and with the ROSAT All-Sky Survey (RASS) catalogues, bright and faint. The probabilistic method allows for detection improvement of faint extended celestial sources compared to the standard methods applied for the realization of the RASS catalogues.
引用
收藏
页码:847 / 850
页数:4
相关论文
共 50 条
  • [21] Approximate Bayesian Inference for Doubly Robust Estimation
    Graham, Daniel J.
    McCoy, Emma J.
    Stephens, David A.
    [J]. BAYESIAN ANALYSIS, 2016, 11 (01): : 47 - 69
  • [22] Density estimation via Bayesian inference engines
    Wand, M. P.
    Yu, J. C. F.
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2022, 106 (02) : 199 - 216
  • [23] Density estimation via Bayesian inference engines
    M. P. Wand
    J. C. F. Yu
    [J]. AStA Advances in Statistical Analysis, 2022, 106 : 199 - 216
  • [24] Estimation of calibration intervals using Bayesian inference
    Carvajal, Sergio A.
    Medina, Andres F.
    Bohorquez, Andres J.
    Sanchez, Ciro A.
    [J]. MEASUREMENT, 2022, 187
  • [25] Bayesian Estimation and Inference: A User's Guide
    Zyphur, Michael J.
    Oswald, Frederick L.
    [J]. JOURNAL OF MANAGEMENT, 2015, 41 (02) : 390 - 420
  • [26] Bayesian Estimation and Inference Using Stochastic Electronics
    Thakur, Chetan Singh
    Afshar, Saeed
    Wang, Runchun M.
    Hamilton, Tara J.
    Tapson, Jonathan
    van Schaik, Andre
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10
  • [27] Bayesian modeling for dynamic background detection
    Liu, Ying-Xia
    He, Chang-Wei
    Wang, Xin
    [J]. Xitong Fangzhen Xuebao / Journal of System Simulation, 2007, 19 (21): : 5042 - 5045
  • [28] Background Subtraction Based on Nonparametric Bayesian Estimation
    He, Yan
    Wang, Donghui
    Zhu, Miaoliang
    [J]. THIRD INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2011), 2011, 8009
  • [29] ESTIMATION OF PROBABILITY OF SOURCE DETECTION IN NUCLEAR-PHYSICS MEASUREMENTS WITH STATIONARY BACKGROUND
    PERKOV, AI
    FEDOTOV, SN
    [J]. INSTRUMENTS AND EXPERIMENTAL TECHNIQUES, 1989, 32 (05) : 1082 - 1085
  • [30] Background estimation using a robust Bayesian analysis
    David, WIF
    Sivia, DS
    [J]. JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2001, 34 : 318 - 324