Source detection and background estimation with Bayesian inference

被引:0
|
作者
Guglielmetti, F [1 ]
Fischer, R [1 ]
Voges, W [1 ]
Boese, G [1 ]
Dose, V [1 ]
机构
[1] Max Planck Inst Plasma Phys, Ctr Interdisciplinary Plasma Sci, Garching, Germany
关键词
data analysis; Bayesian inference; background estimation; source detection;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A probabilistic technique for the joint estimation of background and sources in high-energy astrophysics is described. Bayesian inference is applied to gain insight into the coexistence of background and sources through a probabilistic two-component mixture model, which provides consistent uncertainties of background and sources. The present analysis is applied on ROSAT PSPC data in Survey Mode. A background map is modelled using a Thin-Plate spline. Source probability maps are obtained for each pixel (45 arcsec) independently and for larger correlation lengths, revealing faint and extended sources. Source probability maps are combined for two ROSAT PSPC energy bands, hard (0.5-2.0 keV) and soft (0.1-0.5 keV), and compared with the corresponding source probability maps at the broad energy band (0.1-2.4 keV) and with the ROSAT All-Sky Survey (RASS) catalogues, bright and faint. The probabilistic method allows for detection improvement of faint extended celestial sources compared to the standard methods applied for the realization of the RASS catalogues.
引用
收藏
页码:847 / 850
页数:4
相关论文
共 50 条
  • [1] Background beliefs in Bayesian inference
    Evans, JST
    Handley, SJ
    Over, DE
    Perham, N
    [J]. MEMORY & COGNITION, 2002, 30 (02) : 179 - 190
  • [2] Background beliefs in Bayesian inference
    Jonathan St. B. T. Evans
    Simon J. Handley
    David E. Over
    Nicholas Perham
    [J]. Memory & Cognition, 2002, 30 : 179 - 190
  • [3] Nonparametric Bayesian background estimation for hyperspectral anomaly detection
    Arisoy, Sertac
    Kayabol, Koray
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 111 (111)
  • [4] Bayesian background estimation
    Fischer, R
    Dose, V
    Hanson, KM
    von der Linden, W
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2001, 567 : 193 - 212
  • [5] Turbulent Schmidt number for source term estimation using Bayesian inference
    Xue, Fei
    Li, Xiaofeng
    Ooka, Ryozo
    Kikumoto, Hideki
    Zhang, Weirong
    [J]. BUILDING AND ENVIRONMENT, 2017, 125 : 414 - 422
  • [6] POINT ESTIMATION AND BAYESIAN INFERENCE
    EASTERLI.RG
    [J]. AMERICAN STATISTICIAN, 1973, 27 (05): : 241 - 241
  • [7] Improving source detection and separation in a spatiotemporal Bayesian inference dipole analysis
    Jun, Sung C.
    George, John S.
    Plis, Sergey M.
    Ranken, Doug M.
    Schmidt, David M.
    Wood, C. C.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2006, 51 (10): : 2395 - 2414
  • [8] Bayesian inference and wind field statistical modeling applied to multiple source estimation
    Albani, Roseane A. S.
    Albani, Vinicius V. L.
    Gomes, Luiz E. S.
    Migon, Helio S.
    Neto, Antonio J. Silva
    [J]. ENVIRONMENTAL POLLUTION, 2023, 321
  • [9] Improved iterative joint detection and estimation through variational Bayesian inference
    Sadough, S. M-S
    Modarresi, M.
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2012, 66 (05) : 380 - 383
  • [10] Bayesian Inference: Parameter Estimation for Inference in Small Samples
    Baig, Sabeeh A.
    [J]. NICOTINE & TOBACCO RESEARCH, 2022, 24 (06) : 937 - 941