Embeddings of low-dimensional strange attractors: Topological invariants and degrees of freedom

被引:7
|
作者
Romanazzi, Nicola [1 ]
Lefranc, Marc
Gilmore, Robert
机构
[1] Drexel Univ, Dept Phys, Philadelphia, PA 19104 USA
[2] Univ Sci & Tech Lille Flandres Artois, Ctr Etud & Rech Lasers & Applicat, CNRS, UMR 8523,Lab Phys Lasers Atomes Mol, F-59655 Villeneuve Dascq, France
来源
PHYSICAL REVIEW E | 2007年 / 75卷 / 06期
关键词
D O I
10.1103/PhysRevE.75.066214
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
When a low-dimensional chaotic attractor is embedded in a three-dimensional space its topological properties are embedding-dependent. We show that there are just three topological properties that depend on the embedding: Parity, global torsion, and knot type. We discuss how they can change with the embedding. Finally, we show that the mechanism that is responsible for creating chaotic behavior is an invariant of all embeddings. These results apply only to chaotic attractors of genus one, which covers the majority of cases in which experimental data have been subjected to topological analysis. This means that the conclusions drawn from previous analyses, for example that the mechanism generating chaotic behavior is a Smale horseshoe mechanism, a reverse horseshoe, a gateau roule, an S-template branched manifold, etc., are not artifacts of the embedding chosen for the analysis.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [31] Incorporating Topological Priors Into Low-Dimensional Visualizations Through Topological Regularization
    Heiter, Edith
    Vandaele, Robin
    de Bie, Tijl
    Saeys, Yvan
    Lijffijt, Jefrey
    IEEE ACCESS, 2024, 12 : 129541 - 129573
  • [32] Isomorphism classes and invariants of low-dimensional filiform Leibniz algebras
    Abdulkareem, A. O.
    Rakhimov, I. S.
    Husain, S. K. Said
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (11): : 2254 - 2274
  • [33] A geometrical take on invariants of low-dimensional manifolds found by integration
    Wintraecken, M. H. M. J.
    Vegter, G.
    TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (17) : 2175 - 2182
  • [34] QUASI-PERIODICITY, STRANGE NONCHAOTIC AND CHAOTIC ATTRACTORS IN A FORCED 2 DEGREES-OF-FREEDOM SYSTEM
    AWREJCEWICZ, J
    REINHARDT, WD
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (05): : 713 - 727
  • [35] Topological superconductivity and Majorana states in low-dimensional systems
    Val'kov, V. V.
    Shustin, M. S.
    Aksenov, S., V
    Zlotnikov, A. O.
    Fedoseev, A. D.
    Mitskan, V. A.
    Kagan, M. Yu
    PHYSICS-USPEKHI, 2022, 65 (01) : 2 - 39
  • [36] On the choice of the low-dimensional domain for global optimization via random embeddings
    Mickaël Binois
    David Ginsbourger
    Olivier Roustant
    Journal of Global Optimization, 2020, 76 : 69 - 90
  • [37] Predicting multiple observations in complex systems through low-dimensional embeddings
    Tao Wu
    Xiangyun Gao
    Feng An
    Xiaotian Sun
    Haizhong An
    Zhen Su
    Shraddha Gupta
    Jianxi Gao
    Jürgen Kurths
    Nature Communications, 15
  • [38] On the choice of the low-dimensional domain for global optimization via random embeddings
    Binois, Mickael
    Ginsbourger, David
    Roustant, Olivier
    JOURNAL OF GLOBAL OPTIMIZATION, 2020, 76 (01) : 69 - 90
  • [39] Predicting multiple observations in complex systems through low-dimensional embeddings
    Wu, Tao
    Gao, Xiangyun
    An, Feng
    Sun, Xiaotian
    An, Haizhong
    Su, Zhen
    Gupta, Shraddha
    Gao, Jianxi
    Kurths, Juergen
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [40] Link prediction using low-dimensional node embeddings: The measurement problem
    Menand, Nicolas
    Seshadhri, C.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (08)