Two-Dimensional Numerical Analysis of Non-Darcy Flow Using the Lattice Boltzmann Method: Pore-Scale Heterogeneous Effects

被引:4
|
作者
Takeuchi, Yuto [1 ]
Takeuchi, Junichiro [1 ]
Izumi, Tomoki [2 ]
Fujihara, Masayuki [1 ]
机构
[1] Kyoto Univ, Grad Sch Agr, Sakyo Ku, Kyoto 6068502, Japan
[2] Ehime Univ, Grad Sch Agr, Matsuyama, Ehime 7908566, Japan
基金
日本学术振兴会;
关键词
SINGLE-PHASE FLOW; POROUS-MEDIA; FLUID-FLOW; REGIME; MODEL;
D O I
10.1115/1.4049689
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study simulates pore-scale two-dimensional flows through porous media composed of circular grains with varied pore-scale heterogeneity to analyze non-Darcy flow effects on different types of porous media using the lattice Boltzmann method. The magnitude of non-Darcy coefficients and the critical Reynolds number of non-Darcy flow were computed from the simulation results using the Forchheimer equation. Although the simulated porous materials have similar porosity and representative grain diameters, larger non-Darcy coefficients and an earlier onset of non-Darcy flow were observed for more heterogeneous porous media. The simulation results were compared with existing correlations to predict non-Darcy coefficients, and the large sensitivity of non-Darcy coefficients to pore-scale heterogeneity was identified. The pore-scale heterogeneity and resulting flow fields were evaluated using the participation number. From the computed participation numbers and visualized flow fields, a significant channeling effect for heterogeneous media in the Darcy flow regime was confirmed compared with that for homogeneous media. However, when non-Darcy flow occurs, this channeling effect was alleviated. This study characterizes non-Darcy effect with alleviation of the channeling effect quantified with an increase in participation number. Our findings indicate a strong sensitivity of magnitude and onset of non-Darcy effect to pore-scale heterogeneity and imply the possibility of evaluating non-Darcy effect through numerical analysis of the channeling effect.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Two-dimensional numerical simulation of channel flow with submerged obstacles using the lattice Boltzmann method
    Cargnelutti, J.
    Galina, V.
    Kaviski, E.
    Gramani, L. M.
    Lobeiro, A. M.
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2018, 34 (01):
  • [22] Finding preferential paths by numerical simulations of reactive non-darcy flow through porous media with the Lattice Boltzmann method
    Ramon G. C. Lourenço
    Pedro H. Constantino
    Frederico W. Tavares
    Brazilian Journal of Chemical Engineering, 2023, 40 : 759 - 774
  • [23] Finding preferential paths by numerical simulations of reactive non-darcy flow through porous media with the Lattice Boltzmann method
    Lourenco, Ramon G. C.
    Constantino, Pedro H.
    Tavares, Frederico W.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (03) : 759 - 774
  • [24] Simulation of two-dimensional oscillating flow using the lattice Boltzmann method
    Wang, Y.
    He, Y. L.
    Tang, G. H.
    Tao, W. Q.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (05): : 615 - 630
  • [25] Pore-scale lattice Boltzmann simulation of two-component shale gas flow
    Ren, Junjie
    Zheng, Qiao
    Guo, Ping
    Peng, Song
    Wang, Zhouhua
    Du, Jianfen
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2019, 61 : 46 - 70
  • [26] Pore-Scale Investigation of Methane Hydrate Dissociation Using the Lattice Boltzmann Method
    Zhang, Liming
    Zhang, Chuangde
    Zhang, Kai
    Zhang, Lei
    Yao, Jun
    Sun, Hai
    Yang, Yongfei
    WATER RESOURCES RESEARCH, 2019, 55 (11) : 8422 - 8444
  • [27] Wettability alteration implications on pore-scale multiphase flow in porous media using the lattice Boltzmann method
    Nemer, Mohamed N.
    Rao, Parthib R.
    Schaefer, Lara
    ADVANCES IN WATER RESOURCES, 2020, 146
  • [28] Pore-scale investigation on reactive flow in porous media with immiscible phase using lattice Boltzmann method
    Zhou, Xiao
    Xu, Zhiguo
    Xia, Yulei
    Li, Binfei
    Qin, Jie
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 191
  • [29] Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials
    Kutay, Muhammed E.
    Aydilek, Ahmet H.
    Masad, Eyad
    COMPUTERS AND GEOTECHNICS, 2006, 33 (08) : 381 - 395
  • [30] Pore-scale simulation of effects of coal wettability on bubble-water flow in coal cleats using lattice Boltzmann method
    Yi, Jie
    Xing, Huilin
    CHEMICAL ENGINEERING SCIENCE, 2017, 161 : 57 - 66