Singularities of bicomplex holomorphic functions

被引:6
|
作者
Luna-Elizarraras, M. Elena [1 ]
Perez-Regalado, C. Octavio [2 ]
Shapiro, Michael [1 ]
机构
[1] Holon Inst Technol, Dept Math, Holon, Israel
[2] Bank Mexico, Off Stat, Mexico City, DF, Mexico
关键词
bicomplex numbers; hyperbolic curves; singularities of bicomplex functions;
D O I
10.1002/mma.7522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the theory of bicomplex holomorphic functions, there is not concept of isolated singularities; that is, such functions do not have singularities just at a point like holomorphic functions in one complex variable. However, there are other type of singularities that behave similarly to the isolated singularities in one complex variable. In this work, we describe how they can be classified in such a way that it resembles the classification made for the complex analysis case. It turns out that to singularities there corresponds their orders which are hyperbolic numbers with integer components, not real integers. We give also the Residue Theorem in the bicomplex analysis setting.
引用
收藏
页码:7933 / 7948
页数:16
相关论文
共 50 条
  • [31] On Factorization of Bicomplex Meromorphic Functions
    Charak, K. S.
    Rochon, D.
    HYPERCOMPLEX ANALYSIS, 2009, : 55 - +
  • [32] On the extension of L2 holomorphic functions VII: Hypersurfaces with isolated singularities
    Takeo Ohsawa
    Science China Mathematics, 2017, 60 : 1083 - 1088
  • [33] REMOVABLE SINGULARITIES OF BOUNDARY-VALUES OF HOLOMORPHIC-FUNCTIONS IN THE SENSE OF DISTRIBUTION
    ABE, Y
    BULLETIN DES SCIENCES MATHEMATIQUES, 1985, 109 (01): : 13 - 21
  • [34] REDUCTION OF THE SINGULARITIES OF HOLOMORPHIC FOLIATIONS
    CANO, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1988, 307 (15): : 795 - 798
  • [36] 2ND MICROLOCAL SINGULARITIES AND BOUNDARY-VALUES OF HOLOMORPHIC-FUNCTIONS
    OKADA, Y
    TOSE, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1989, 65 (10) : 329 - 332
  • [37] Normal families of bicomplex meromorphic functions
    Charak, Kuldeep Singh
    Rochon, Dominic
    Sharma, Narinder
    ANNALES POLONICI MATHEMATICI, 2012, 103 (03) : 303 - 317
  • [38] Complex Laplacian and Derivatives of Bicomplex Functions
    M. E. Luna-Elizarrarás
    M. Shapiro
    D. C. Struppa
    A. Vajiac
    Complex Analysis and Operator Theory, 2013, 7 : 1675 - 1711
  • [39] Zero-free regions for bicomplex polynomials and related bicomplex entire functions
    Zargar, Bashir Ahmad
    Kumar, Ashish
    Gulzar, M. H.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (02): : 743 - 752
  • [40] Complex Laplacian and Derivatives of Bicomplex Functions
    Luna-Elizarraras, M. E.
    Shapiro, M.
    Struppa, D. C.
    Vajiac, A.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (05) : 1675 - 1711