LEVITIN-POLYAK WELL-POSEDNESS IN GENERALIZED EQUILIBRIUM PROBLEMS WITH FUNCTIONAL CONSTRAINTS

被引:0
|
作者
Wang, G. [1 ]
Huang, X. X. [2 ]
Zhang, J. [3 ]
机构
[1] Qufu Normal Univ, Sch Operat Res & Management Sci, Qufu 276826, Shandong, Peoples R China
[2] Chongqing Univ, Sch Business Adm & Econ, Chongqing 400030, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Inst Appl Math, Chongqing 400065, Peoples R China
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2010年 / 6卷 / 02期
关键词
generalized equilibrium problems; well-posedness; set-valued map; approximating solution sequence; VARIATIONAL INEQUALITY PROBLEMS; OPTIMIZATION PROBLEMS;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce four types of (generalized) Levitin-Polyak well-posedness for generalized equilibrium problems with abstract and functional constraints. Criteria and characterizations for these types of well-posedness are given. Under suitable conditions, we show that any type of well-posedness of generalized equilibrium problems is equivalent to the nonemptiness and compactness of its solution set.
引用
收藏
页码:441 / 453
页数:13
相关论文
共 50 条
  • [41] Levitin–Polyak well-posedness for split equilibrium problems
    Soumitra Dey
    Aviv Gibali
    Simeon Reich
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [42] Levitin–Polyak well-posedness of variational inequality problems with functional constraints
    X. X. Huang
    X. Q. Yang
    D. L. Zhu
    Journal of Global Optimization, 2009, 44 : 159 - 174
  • [43] Levitin-Polyak well-posedness for generalized semi-infinite multiobjective programming problems
    Long, Xian-Jun
    Peng, Zai-Yun
    Sun, Xiang-Kai
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 13
  • [44] Levitin-Polyak well-posedness for generalized semi-infinite multiobjective programming problems
    Xian-Jun Long
    Zai-Yun Peng
    Xiang-Kai Sun
    Journal of Inequalities and Applications, 2016
  • [45] SCALARIZATION AND POINTWISE LEVITIN-POLYAK WELL-POSEDNESS FOR SET OPTIMIZATION PROBLEMS
    Liu, Jia
    Chen, Jiawei
    Wen, Ching-Feng
    Zhang, Wenyan
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2017, 18 (06) : 1023 - 1040
  • [46] Scalarization method for Levitin-Polyak well-posedness of vectorial optimization problems
    Zhu, Li
    Xia, Fu-quan
    MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2012, 76 (03) : 361 - 375
  • [47] Levitin-Polyak well-posedness for constrained quasiconvex vector optimization problems
    Lalitha, C. S.
    Chatterjee, Prashanto
    JOURNAL OF GLOBAL OPTIMIZATION, 2014, 59 (01) : 191 - 205
  • [48] Generalized Levitin-Polyak Well-Posedness for Generalized Semi-Infinite Programs
    Wang, Gang
    Yang, X. Q.
    Cheng, T. C. E.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (06) : 695 - 711
  • [49] Levitin-Polyak well-posedness for parametric quasivariational inclusion and disclusion problems
    Boonman, Panatda
    Wangkeeree, Rabian
    CARPATHIAN JOURNAL OF MATHEMATICS, 2018, 34 (03) : 295 - 303
  • [50] On Levitin-Polyak well-posedness and stability in set optimization
    Gupta, Meenakshi
    Srivastava, Manjari
    POSITIVITY, 2021, 25 (05) : 1903 - 1921