An improved PSO algorithm with genetic and neighborhood-based diversity operators for the job shop scheduling problem

被引:15
|
作者
Abdel-Kader, Rehab F. [1 ]
机构
[1] Port Said Univ, Fac Engn, Elect Engn Dept, Port Fouad 42523, Port Said, Egypt
关键词
PARTICLE SWARM OPTIMIZATION; TABU SEARCH; IMPLEMENTATION;
D O I
10.1080/08839514.2018.1481903
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The job shop scheduling problem (JSSP) is an important NP-hard practical scheduling problem that has various applications in the fields of optimization and production engineering. In this paper an effective scheduling method based on particle swarm optimization (PSO) for the minimum makespan problem of the JSSP is proposed. New variants of the standard PSO operators are introduced to adapt the velocity and position update rules to the discrete solution space of the JSSP. The proposed algorithm is improved by incorporating two neighborhood-based operators to improve population diversity and to avoid early convergence to local optima. First, the diversity enhancement operator tends to improve the population diversity by relocating neighboring particles to avoid premature clustering and to achieve broader exploration of the solution space. This is achieved by enforcing a circular neighboring area around each particle if the population diversity falls beneath the adaptable diversity threshold. The adaptive threshold is utilized to regulate the population diversity throughout the different stages of the search process. Second, the local search operator based on critical path analysis is used to perform local exploitation in the neighboring area of the best particles. Variants of the genetic well-known operators selection and crossover are incorporated to evolve stagnated particles in the swarm. The proposed method is evaluated using a collection of 123 well-studied benchmarks. Experimental results validate the effectiveness of the proposed method in producing excellent solutions that are robust and competitive to recent state-of-the-art heuristic-based algorithms reported in literature for nearly all of the tested instances.
引用
收藏
页码:433 / 462
页数:30
相关论文
共 50 条
  • [31] An improved genetic algorithm with recurrent search for the job-shop scheduling problem
    Xing, Yingjie
    Wang, Zhuqing
    Sun, Jing
    Wang, Wanlei
    WCICA 2006: SIXTH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-12, CONFERENCE PROCEEDINGS, 2006, : 3386 - +
  • [32] Research of Job-Shop Scheduling Problem Based on Improved Crossover Strategy Genetic Algorithm
    Liu, Xiaobing
    Jiao, Xuan
    Li, Chen
    Huang, Ming
    2013 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT), 2013, : 1 - 4
  • [33] Improved Genetic Algorithm Based on Operation Order Matrix Encoding for Job Shop Scheduling Problem
    Zhan, Hong
    Yang, Jianjun
    Ju, Luyan
    MANUFACTURING PROCESS TECHNOLOGY, PTS 1-5, 2011, 189-193 : 4212 - 4215
  • [34] A DISCRETE JOB-SHOP SCHEDULING ALGORITHM BASED ON IMPROVED GENETIC ALGORITHM
    Zhang, H.
    Zhang, Y. Q.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2020, 19 (03) : 517 - 528
  • [35] An Improved Bat Algorithm for Job Shop Scheduling Problem
    Chen, Xiaohan
    Zhang, Beike
    Gao, Dong
    2019 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (ICMA), 2019, : 439 - 443
  • [36] Improved Genetic Algorithm Approach Based on New Virtual Crossover Operators for Dynamic Job Shop Scheduling
    Ben Ali, Kaouther
    Telmoudi, Achraf Jabeur
    Gattoufi, Said
    IEEE ACCESS, 2020, 8 : 213318 - 213329
  • [37] The fuzzy job-shop scheduling based on improved genetic algorithm
    Liu, Wen-Yuan
    Chen, Zhi-Ru
    Shi, Yan
    Yang, Hai-Ying
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3144 - +
  • [38] Improved genetic algorithm for Job-Shop scheduling
    Zhang, Chao-Yong
    Rao, Yun-Qing
    Li, Pei-Gen
    Liu, Xiang-Jun
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2004, 10 (08): : 966 - 970
  • [39] Improved Genetic Algorithm for Job-Shop Scheduling
    程蓉
    陈幼平
    李志刚
    Journal of Southwest Jiaotong University, 2006, (03) : 223 - 227
  • [40] Improved genetic algorithm for job-shop scheduling
    College of Engineering and Technology, Shenzhen University, Shenzhen 518060, China
    Shenzhen Daxue Xuebao (Ligong Ban), 2006, 3 (272-277):