Pyrite δ34S and Δ33S constraints on sulfur cycling at sublacustrine hydrothermal vents in Yellowstone Lake, Wyoming, USA

被引:13
|
作者
Fowler, Andrew P. G. [1 ,6 ]
Liu, Qiu-li [2 ,3 ]
Huang, Yongshu [2 ,3 ]
Tan, Chunyang [1 ]
Volk, Michael W. R. [1 ,4 ]
Shanks, W. C. Pat, III [5 ]
Seyfried, William, Jr. [1 ]
机构
[1] Univ Minnesota, Dept Earth Sci, Minneapolis, MN 55455 USA
[2] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher Evolut, Beijing 100029, Peoples R China
[3] Univ Chinese Acad Sci, Coll Earth Sci, Beijing 100049, Peoples R China
[4] Harvard Univ, Dept Earth & Planetary Sci, 20 Oxford St, Cambridge, MA 02138 USA
[5] US Geol Survey, Denver Fed Ctr, MS 973, Denver, CO 80225 USA
[6] EHS Support, Pittsburgh, PA 15237 USA
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Yellowstone Lake; SIMS; Sulfur isotopes; Pyrite; Pyrrhotite; Sublacustrine; Hydrothermal dynamics; AQUEOUS SULFIDE SOLUTIONS; SULFATE REDUCTION; SEDIMENTARY PYRITE; ISOTOPE FRACTIONATION; CHIMNEY MINERALS; HYDROGEN-SULFIDE; POLYSULFIDE IONS; S-33; CONSTRAINTS; STABLE-ISOTOPE; DEGREES-C;
D O I
10.1016/j.gca.2019.09.004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sulfur isotope values (delta S-34 and Delta S-33) of pyrite in sediment from steam-heated hydrothermal vents on the floor of Yellow-stone Lake ( WY) were measured using secondary ionization mass spectrometry (SIMS). The high resolution of the SIMS data place important constraints on sulfur cycling processes at/near the vent fluid-lake water interface. Pyrite with a distinct mantle-basalt (delta S-34 = 0 parts per thousand) isotope composition (delta S-34 = +0.5 to +3.1 parts per thousand) replaces pyrrhotite during incipient stages of alteration at moderately high temperature. Disseminated cubic pyrite (delta S-34 = +2.0 to +5.3 parts per thousand) occurs in zones where more extensive oxidation is likely. Framboidal pyrite with delta S-34 values ranging from -5.2 to +4.1 parts per thousand and Delta S-33 up to +0.30 parts per thousand suggest formation from low-temperature microbial sulfate reduction in sediments near but not directly in the vent fluid up-flow zone. The co-occurrence of pyrite with S isotope values characteristic of distinct formation processes, coupled with notable intracrystal S isotope variations, suggests the venting locus is dynamic in time and space. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:148 / 162
页数:15
相关论文
共 50 条
  • [31] Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction
    Antler, Gilad
    Turchyn, Alexandra V.
    Ono, Shuhei
    Sivan, Orit
    Bosak, Tanja
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2017, 203 : 364 - 380
  • [32] A comprehensive evaluation of sulfur isotopic analysis (δ34S and δ33S) using multi-collector ICP-MS with characterization of reference materials of geological and biological origin
    Rodiouchkina, Katerina
    Rodushkin, Ilia
    Goderis, Steven
    Vanhaecke, Frank
    ANALYTICA CHIMICA ACTA, 2023, 1240
  • [33] Protogenetic sulfide inclusions in diamonds evidenced from δ33S, δ34S, δ15N and δ13C analyses
    Thomassot, E.
    Cartigny, P.
    Lorand, J-P.
    Harris, J. W.
    Chaussidon, M.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2006, 70 (18) : A648 - A648
  • [34] New constraints for crustal sulfur contamination of gold source: Evidence from complex?34S of pyrite in the northwestern Jiaodong gold province, China
    Hu, Huan-Long
    Fan, Hong-Rui
    Lan, Ting-Guang
    Xu, Yang
    Cai, Ya-Chun
    Yang, Kui-Feng
    Dai, Zhi-Hui
    PRECAMBRIAN RESEARCH, 2022, 378
  • [35] Multiple sulfur isotopes and stratigraphic constraints for the 34S enrichments in the late Ediacaran-Cambrian pyrite-sulfur record: A product of supercontinent assembly and restricted seas
    Caetano-Filho, Sergio
    Sansjofre, Pierre
    Paula-Santos, Gustavo M.
    Ader, Magali
    Cartigny, Pierre
    Guacaneme, Cristian
    Babinski, Marly
    Kuchenbecker, Matheus
    Reis, Humberto L. S.
    Trindade, Ricardo I. F.
    GONDWANA RESEARCH, 2024, 131 : 75 - 90
  • [36] Photoabsorption cross-section measurements of 32S, 33S, 34S, and 36S sulfur dioxide for the B1B1-X1A1 absorption band
    Danielache, Sebastian O.
    Hattori, Shohei
    Johnson, Matthew S.
    Ueno, Yuichiro
    Nanbu, Shinkoh
    Yoshida, Naohiro
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [37] Activity of sulfur reducing bacteria in deep bedrock fractures revealed by variability of δ34S in pyrite and dissolved sulfate
    Drake, Henrik
    Astrom, Mats E.
    Tullborg, Eva-Lena
    Whitehouse, Martin
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL SYMPOSIUM ON WATER-ROCK INTERACTION, WRI 14, 2013, 7 : 228 - 231
  • [38] A paired sulfate-pyrite δ34S approach to understanding the evolution of the Ediacaran-Cambrian sulfur cycle
    Fike, D. A.
    Grotzinger, J. P.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (11) : 2636 - 2648
  • [39] Coupled isotopic study (δ33S, δ34S, δ15N, δ13C) of sulfide-bearing diamonds (Jwaneng, Botswana)
    Thomassot, E
    Cartigny, P
    Lorand, JP
    Harris, JW
    Chaussidon, M
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2005, 69 (10) : A446 - A446
  • [40] 六氟化硫法测量33S/32S、34S/32S和36S/32S的方法研究
    丁悌平
    黎红
    张国柄
    李延河
    李金城
    矿床地质, 1987, (04) : 81 - 93