An <inline-formula> <tex-math notation="LaTeX">$\ell_0$ </tex-math></inline-formula>-Norm-Based Centers Selection for Failure Tolerant RBF Networks

被引:0
|
作者
Wang, Hao [1 ]
Shi, Zhanglei [1 ]
Wong, Hiu Tung [1 ]
Leung, Chi-Sing [1 ]
So, Hing Cheung [1 ]
Feng, Ruibin [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Training; Linear programming; Radial basis function networks; Approximation algorithms; Fault tolerance; Fault tolerant systems; Convex functions; Failure tolerant; RBF; center selection; ADMM; < italic xmlns:ali="http:; www; niso; org; schemas; ali; 1; 0; xmlns:mml="http:; w3; 1998; Math; MathML" xmlns:xlink="http:; 1999; xlink" xmlns:xsi="http:; 2001; XMLSchema-instance"> l <; italic > 0-norm; global convergence; FAULT-TOLERANCE; NEURAL-NETWORKS; DESIGN; ALGORITHMS; REGRESSION; CONVERGENCE; REGULARIZER;
D O I
10.1109/ACCESS.2019.2945807
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There are two important issues in the construction of a radial basis function (RBF) neural network. The first one is to select suitable RBF centers. The second one is that the resultant RBF network should be with good fault tolerance. This paper proposes an algorithm that is able to select RBF centers and to train fault tolerant RBF networks simultaneously. The proposed algorithm borrows the concept from sparse approximation. In our formulation, we first define a fault tolerant objective function based on all input vectors from the training samples. We then introduce the minimax concave penalty (MCP) function, which is an approximation of $\ell _{0}$ -norm, into the objective function. The MCP term is able to force some unimportant RBF weights to zero. Hence the RBF node selection process can be achieved during training. As the MCP function is nondifferentiable and nonconvex, traditional gradient descent based algorithms are still unable to minimize the modified objective function. Based on the alternating direction method of multipliers (ADMM) framework, we develop an algorithm, called ADMM-MCP, to minimize the modified objective function. The convergent proof of the proposed ADMM-MCP algorithm is also presented. Simulation results show that the proposed ADMM-MCP algorithm is superior to many existing center selection algorithms under the concurrent fault situation.
引用
收藏
页码:151902 / 151914
页数:13
相关论文
共 50 条
  • [11] Radio Number for Generalized Petersen Graphs &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$P(n,2)$ &lt;/tex-math&gt;&lt;/inline-formula&gt;
    Zhang, Feige
    Nazeer, Saima
    Habib, Mustafa
    Zia, Tariq Javed
    Ren, Zhendong
    IEEE ACCESS, 2019, 7 : 142000 - 142008
  • [12] H-&lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$\Phi$ &lt;/tex-math&gt;&lt;/inline-formula&gt; Field Formulation With Lumped Sources and Unbounded Domains
    Casati, Daniele
    Smajic, Jasmin
    Hiptmair, Ralf
    IEEE TRANSACTIONS ON MAGNETICS, 2020, 56 (01)
  • [13] Accelerated Schemes for the &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;$L_1/L_2$&lt;/tex-math&gt;&lt;/inline-formula&gt; Minimization
    Wang, Chao
    Yan, Ming
    Rahimi, Yaghoub
    Lou, Yifei
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 2660 - 2669
  • [14] &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$DeepMotions$ &lt;/tex-math&gt;&lt;/inline-formula&gt;: A Deep Learning System for Path Prediction Using Similar Motions
    Abdalla, Mohammed
    Hendawi, Abdeltawab
    Mokhtar, Hoda M. O.
    Elgamal, Neveen
    Krumm, John
    Ali, Mohamed
    IEEE ACCESS, 2020, 8 : 23881 - 23894
  • [15] Path-Based Dictionary Augmentation: A Framework for Improving &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$k$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Sparse Image Processing
    Emerson, Tegan H.
    Olson, Colin C.
    Doster, Timothy
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1259 - 1270
  • [16] A Comprehensive Usability Measurement Tool for &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$m$&lt;/tex-math&gt; &lt;/inline-formula&gt;-Learning Applications
    Navarro-Cota, Christian X.
    Molina, Ana I.
    Redondo, Miguel A.
    Lacave, Carmen
    IEEE TRANSACTIONS ON EDUCATION, 2024, 67 (02) : 209 - 223
  • [17] Bumpless Transfer Control for Switched Fuzzy Systems With &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;$L_2$&lt;/tex-math&gt;&lt;/inline-formula&gt;-Gain Property
    Zhao, Ying
    Zhao, Jun
    Fu, Jun
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2019, 27 (10) : 2039 - 2051
  • [18] Control Strategy Based on &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$\text{H}\infty$ &lt;/tex-math&gt;&lt;/inline-formula&gt; Repetitive Controller With Active Damping for Islanded Microgrid
    Ma, Wenjie
    Ouyang, Sen
    Zhang, Jun
    Xu, Weidong
    IEEE ACCESS, 2019, 7 : 162157 - 162168
  • [19] &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$(t,n)$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Threshold Quantum Secret Sharing Based on One-Way Local Distinguishability
    Bai, Chen-Ming
    Zhang, Su-Juan
    Liu, Lu
    IEEE ACCESS, 2019, 7 : 147256 - 147265
  • [20] Design and Fabrication of Low Phase Noise Oscillator Using &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$Q$ &lt;/tex-math&gt;&lt;/inline-formula&gt; Enhancement of the SISL Cavity Resonator
    Li, Meng
    Ma, Kaixue
    Hu, Jianquan
    Wang, Yongqiang
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2019, 67 (10) : 4260 - 4268