An <inline-formula> <tex-math notation="LaTeX">$\ell_0$ </tex-math></inline-formula>-Norm-Based Centers Selection for Failure Tolerant RBF Networks

被引:0
|
作者
Wang, Hao [1 ]
Shi, Zhanglei [1 ]
Wong, Hiu Tung [1 ]
Leung, Chi-Sing [1 ]
So, Hing Cheung [1 ]
Feng, Ruibin [1 ]
机构
[1] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Training; Linear programming; Radial basis function networks; Approximation algorithms; Fault tolerance; Fault tolerant systems; Convex functions; Failure tolerant; RBF; center selection; ADMM; < italic xmlns:ali="http:; www; niso; org; schemas; ali; 1; 0; xmlns:mml="http:; w3; 1998; Math; MathML" xmlns:xlink="http:; 1999; xlink" xmlns:xsi="http:; 2001; XMLSchema-instance"> l <; italic > 0-norm; global convergence; FAULT-TOLERANCE; NEURAL-NETWORKS; DESIGN; ALGORITHMS; REGRESSION; CONVERGENCE; REGULARIZER;
D O I
10.1109/ACCESS.2019.2945807
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There are two important issues in the construction of a radial basis function (RBF) neural network. The first one is to select suitable RBF centers. The second one is that the resultant RBF network should be with good fault tolerance. This paper proposes an algorithm that is able to select RBF centers and to train fault tolerant RBF networks simultaneously. The proposed algorithm borrows the concept from sparse approximation. In our formulation, we first define a fault tolerant objective function based on all input vectors from the training samples. We then introduce the minimax concave penalty (MCP) function, which is an approximation of $\ell _{0}$ -norm, into the objective function. The MCP term is able to force some unimportant RBF weights to zero. Hence the RBF node selection process can be achieved during training. As the MCP function is nondifferentiable and nonconvex, traditional gradient descent based algorithms are still unable to minimize the modified objective function. Based on the alternating direction method of multipliers (ADMM) framework, we develop an algorithm, called ADMM-MCP, to minimize the modified objective function. The convergent proof of the proposed ADMM-MCP algorithm is also presented. Simulation results show that the proposed ADMM-MCP algorithm is superior to many existing center selection algorithms under the concurrent fault situation.
引用
收藏
页码:151902 / 151914
页数:13
相关论文
共 50 条
  • [1] Structure Connectivity and Substructure Connectivity of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$k$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Ary &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$n$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Cube Networks
    Zhang, Guozhen
    Wang, Dajin
    IEEE ACCESS, 2019, 7 : 134496 - 134504
  • [2] Bringing Plasmonics Into CMOS Photonic Foundries: Aluminum Plasmonics on Si&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;$_{3}$&lt;/tex-math&gt;&lt;/inline-formula&gt;N&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;$_{4}$&lt;/tex-math&gt;&lt;/inline-formula&gt; for Biosensing Applications
    Manolis, Athanasios
    Chatzianagnostou, Evaggelia
    Dabos, George
    Ketzaki, Dimitra
    Tsiokos, Dimitris
    Chmielak, Bartos
    Suckow, Stephan
    Giesecke, Anna L.
    Porschatis, Caroline
    Cegielski, Piotr J.
    Markey, Laurent
    Weeber, Jean-C
    Dereux, Alain
    Pleros, Nikos
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2019, 37 (21) : 5516 - 5524
  • [3] Hyperspectral Mixed Noise Removal By &lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;$\ell _1$&lt;/tex-math&gt;&lt;/inline-formula&gt;-Norm-Based Subspace Representation
    Zhuang, Lina
    Ng, Michael K.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 1143 - 1157
  • [4] &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$L$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Band Ocean Surface Roughness
    Hwang, Paul A.
    Ainsworth, Thomas L.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 3988 - 3999
  • [5] Asymptotic Normality of &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$Q$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Ary Linear Codes
    Shi, Minjia
    Rioul, Olivier
    Sole, Patrick
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (11) : 1895 - 1898
  • [6] A Low Noise Variable Gain Amplifier With Low Phase Error for &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$X$&lt;/tex-math&gt; &lt;/inline-formula&gt;-and &lt;inline-formula&gt; &lt;tex-math notation=&quot;LaTeX&quot;&gt;$Ku$&lt;/tex-math&gt; &lt;/inline-formula&gt;-Band Phased Arrays
    Altintas, Kutay
    Ozkan, Tahsin Alper
    Burak, Abdurrahman
    Yazici, Melik
    Gurbuz, Yasar
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2024, 72 (09) : 5254 - 5263
  • [7] Node Embedding With a &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$CN$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Based Random Walk for Community Search
    Zhao, Weiji
    Zhang, Fengbin
    IEEE ACCESS, 2019, 7 : 169953 - 169960
  • [8] Resonance &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$p$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Laplacian Problem in Edge Device Control of IoT
    Qiu, Jing
    Jiang, Weihua
    Sun, Bingzhi
    Zhu, Chunsheng
    Du, Lei
    Gu, Zhaoquan
    IEEE ACCESS, 2019, 7 : 149776 - 149784
  • [9] A Compact &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;$E$ &lt;/tex-math&gt;&lt;/inline-formula&gt;-Plane Four-Port Junction Circulator
    Deng, Guangjian
    Guo, Letian
    Li, Jiawei
    Huang, Wenhua
    Shao, Hao
    Ba, Tao
    Xie, Shaoyi
    Jiang, Yue
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2019, 29 (10) : 655 - 658
  • [10] Bandwidth-Enhanced High-Gain Microstrip Patch Antenna Under TM&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;$_{\text{30}}$&lt;/tex-math&gt;&lt;/inline-formula&gt; and TM&lt;inline-formula&gt;&lt;tex-math notation="LaTeX"&gt;$_{\text{50}}$&lt;/tex-math&gt;&lt;/inline-formula&gt; Dual-Mode Resonances
    Wen, Juan
    Xie, Danpeng
    Zhu, Lei
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2019, 18 (10): : 1976 - 1980