On convex complexity measures

被引:6
|
作者
Hrubes, P. [2 ]
Jukna, S. [3 ,4 ]
Kulikov, A. [5 ]
Pudlak, P. [1 ]
机构
[1] Math Inst, Prague 11567, Czech Republic
[2] Inst Adv Study, Sch Math, Princeton, NJ 08540 USA
[3] Inst Math & Comp Sci, Vilnius, Lithuania
[4] Goethe Univ Frankfurt, Inst Informat, D-6000 Frankfurt, Germany
[5] VA Steklov Math Inst, St Petersburg 191011, Russia
关键词
Boolean formula; Complexity measure; Combinatorial rectangle; Convexity; Rank; Matrix norm; SIZE LOWER BOUNDS; COMMUNICATION COMPLEXITY;
D O I
10.1016/j.tcs.2010.02.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Khrapchenko's classical lower bound n(2) on the formula size of the parity function f can be interpreted as designing a suitable measure of sub-rectangles of the combinatorial rectangle f(-1)(0) x f(-1)(1). Trying to generalize this approach we arrived at the concept of convex measures. We prove the negative result that convex measures are bounded by O(n(2)) and show that several measures considered for proving lower bounds on the formula size are convex. We also prove quadratic upper bounds on a class of measures that are not necessarily convex. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1842 / 1854
页数:13
相关论文
共 50 条
  • [41] Information concentration for convex measures
    Li, Jiange
    Fradelizi, Matthieu
    Madiman, Mokshay
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 1128 - 1132
  • [42] Moment estimates for convex measures
    Adamczak, Radoslaw
    Guedon, Olivier
    Latala, Rafal
    Litvak, Alexander E.
    Oleszkiewicz, Krzysztof
    Pajor, Alain
    Tomczak-Jaegermann, Nicole
    ELECTRONIC JOURNAL OF PROBABILITY, 2012, 17 : 1 - 19
  • [43] Complexity measures of music
    Pease, April
    Mahmoodi, Korosh
    West, Bruce J.
    CHAOS SOLITONS & FRACTALS, 2018, 108 : 82 - 86
  • [44] On the complexity of expansive measures
    C. A. Morales
    Acta Mathematica Sinica, English Series, 2015, 31 : 1501 - 1507
  • [45] Similarity measures of convex polygons
    Tuzikov, AV
    Hejmance, H
    Margolin, GL
    Sheinin, SA
    DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (02): : 40 - 44
  • [46] MOMENTS OF MEASURES ON CONVEX BODIES
    MASERICK, PH
    PACIFIC JOURNAL OF MATHEMATICS, 1977, 68 (01) : 135 - 152
  • [47] Bernstein measures on convex polytopes
    Tate, Tatsuya
    SPECTRAL ANALYSIS IN GEOMETRY AND NUMBER THEORY, 2009, 484 : 295 - 319
  • [48] Measures of Sections of Convex Bodies
    Koldobsky, Alexander
    CONVEXITY AND CONCENTRATION, 2017, 161 : 565 - 575
  • [49] Convex cores of measures on Rd
    Csiszár, I
    Matús, F
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2001, 38 : 177 - 190
  • [50] Complexity measures and decision tree complexity: a survey
    Buhrman, H
    de Wolf, R
    THEORETICAL COMPUTER SCIENCE, 2002, 288 (01) : 21 - 43