Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions

被引:20
|
作者
Sprekels, J
Zheng, SM
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Fudan Univ, Inst Math, Shanghai 200437, Peoples R China
关键词
phase transitions; nonlocal models; initial-boundary value problems; a priori estimates; asymptotic behaviour; well-posedness; integrodifferential equations;
D O I
10.1016/S0022-247X(02)00559-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a nonlocal phase-field model for non-isothermal phase transitions with a nonconserved order parameter is studied. The paper extends recent investigations to the non-isothermal situation, complementing results obtained by H. Gajewski for the non-isothermal case for conserved order parameters in phase separation phenomena. The resulting field equations studied in this paper form a system of integro-partial differential equations which are highly nonlinearly coupled. For this system, results concerning global existence, uniqueness and large-time asymptotic behaviour are derived. The main results are proved using techniques that have been recently developed by P. Krejci and the authors for phase-field systems involving hysteresis operators. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 50 条
  • [21] A thermodynamically-consistent non-isothermal phase-field model for probing evolution of crack propagation and phase transformation
    Zhen, Yu
    Wu, Kaijin
    Lu, Yuyang
    Liu, Mengqi
    He, Linghui
    Ni, Yong
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2024, 270
  • [22] VARIATIONAL INEQUALITIES FOR A NON-ISOTHERMAL PHASE FIELD MODEL
    Kumazaki, Kota
    Kubo, Masahiro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (02): : 409 - 421
  • [23] Existence of multidimensional phase transitions in a non-isothermal van der Waals fluid
    Zhang, Sli-Yi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (09) : 3093 - 3109
  • [24] A non-isothermal Ginzburg-Landau model in superconductivity: Existence, uniqueness and asymptotic behaviour
    Berti, Valeria
    Fabrizio, Mauro
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (11) : 2565 - 2578
  • [25] STABILITY AND CONVERGENCE OF TWO DISCRETE SCHEMES FOR A DEGENERATE SOLUTAL NON-ISOTHERMAL PHASE-FIELD MODEL
    Guillen-Gonzalez, Francisco
    Vicente Gutierrez-Santacreu, Juan
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (03): : 563 - 589
  • [26] NON-ISOTHERMAL DYNAMIC PHASE-TRANSITIONS
    GRINFELD, M
    QUARTERLY OF APPLIED MATHEMATICS, 1989, 47 (01) : 71 - 84
  • [27] Global existence of weak solution to a phase-field model on martensitic phase transformations
    Yang, Manman
    Wu, Fan
    Zhu, Zixian
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (04) : 3545 - 3559
  • [28] Asymptotic behaviour for a phase-field system with hysteresis
    Krejcí, P
    Sprekels, J
    Zheng, SM
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 175 (01) : 88 - 107
  • [29] A non-isothermal phase-field approach to the second-sound transition in solids
    Fabrizio, M.
    Giorgi, C.
    Morro, A.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2006, 121 (04): : 383 - 399
  • [30] Asymptotic behaviour of solutions to non-isothermal phase separation model with constraint in one-dimensional space
    Ito, A
    Kenmochi, N
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (02) : 491 - 519