Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions

被引:20
|
作者
Sprekels, J
Zheng, SM
机构
[1] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
[2] Fudan Univ, Inst Math, Shanghai 200437, Peoples R China
关键词
phase transitions; nonlocal models; initial-boundary value problems; a priori estimates; asymptotic behaviour; well-posedness; integrodifferential equations;
D O I
10.1016/S0022-247X(02)00559-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a nonlocal phase-field model for non-isothermal phase transitions with a nonconserved order parameter is studied. The paper extends recent investigations to the non-isothermal situation, complementing results obtained by H. Gajewski for the non-isothermal case for conserved order parameters in phase separation phenomena. The resulting field equations studied in this paper form a system of integro-partial differential equations which are highly nonlinearly coupled. For this system, results concerning global existence, uniqueness and large-time asymptotic behaviour are derived. The main results are proved using techniques that have been recently developed by P. Krejci and the authors for phase-field systems involving hysteresis operators. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 50 条
  • [1] A phase-field approach to non-isothermal transitions
    Morro, A.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 48 (3-4) : 621 - 633
  • [2] A non-isothermal thermohydrodynamics phase-field model for liquid-vapor phase transitions with soluble surfactants
    Zhang, Xiao-Yu
    Duan, Xin-Yue
    Zhu, Chuan-Yong
    Xu, Ming-Hai
    Gong, Liang
    Sun, Shuyu
    APPLIED THERMAL ENGINEERING, 2024, 255
  • [3] A non-isothermal phase-field model for piezo–ferroelectric materials
    A. Borrelli
    D. Grandi
    M. Fabrizio
    M. C. Patria
    Continuum Mechanics and Thermodynamics, 2019, 31 : 741 - 750
  • [4] Non-local temperature-dependent phase-field models for non-isothermal phase transitions
    Krejci, Pavel
    Rocca, Elisabetta
    Sprekels, Juegen
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 : 197 - 210
  • [5] A non-isothermal phase-field model for piezo-ferroelectric materials
    Borrelli, A.
    Grandi, D.
    Fabrizio, M.
    Patria, M. C.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2019, 31 (03) : 741 - 750
  • [6] Non-isothermal phase-field models and evolution equation
    Morro, A.
    ARCHIVES OF MECHANICS, 2006, 58 (03): : 257 - 271
  • [7] On the asymptotic behavior of a phase-field model for elastic phase transitions
    Kalies W.D.
    Journal of Dynamics and Differential Equations, 1997, 9 (2) : 289 - 306
  • [8] A thermodynamically consistent non-isothermal phase-field model for selective laser sintering
    Liang, Chenguang
    Yin, Yan
    Wang, Wenxuan
    Yi, Min
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 259
  • [9] A non-isothermal phase-field crystal model with lattice expansion: analysis and benchmarks
    Punke, Maik
    Salvalaglio, Marco
    Voigt, Axel
    Wise, Steven M.
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2025, 33 (02)
  • [10] Comparative analysis of isothermal and non-isothermal solidification of binary alloys using phase-field model
    Xiao, Rong-zhen
    An, Guo-sheng
    Zhu, Chang-sheng
    Wang, Zhi-ping
    Yang, Shi-yin
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2014, 24 (11) : 3639 - 3644