Asynchronous Federated Learning for Sensor Data with Concept Drift

被引:14
|
作者
Chen, Yujing [1 ]
Chai, Zheng [1 ]
Cheng, Yue [1 ]
Rangwala, Huzefa [1 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
关键词
federated learning; asynchronous learning; concept drift; communication-efficient; CLASSIFICATION;
D O I
10.1109/BigData52589.2021.9671924
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fixed and stationary during the training process. However, this assumption is unrealistic because these devices usually have varying sampling rates and different system configurations. In addition, the underlying distribution of the device data can change dynamically over time, which is known as concept drift. Concept drift makes the learning process complicated because of the inconsistency between existing and upcoming data. Traditional concept drift handling techniques such as chunk based and ensemble learning-based methods are not suitable in the federated learning frameworks due to the heterogeneity of local devices. We propose a novel approach, FedConD, to detect and deal with the concept drift on local devices and minimize the effect on the performance of models in asynchronous FL. The drift detection strategy is based on an adaptive mechanism which uses the historical performance of the local models. The drift adaptation is realized by adjusting the regularization parameter of objective function on each local device. Additionally, we design a communication strategy on the server side to select local updates in a prudent fashion and speed up model convergence. Experimental evaluations on three evolving data streams and two image datasets show that FedConD detects and handles concept drift, and also reduces the overall communication cost compared to other baseline methods.
引用
收藏
页码:4822 / 4831
页数:10
相关论文
共 50 条
  • [21] Asynchronous Online Federated Learning for Edge Devices with Non-IID Data
    Chen, Yujing
    Ning, Yue
    Slawski, Martin
    Rangwala, Huzefa
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 15 - 24
  • [22] Asynchronous federated learning on heterogeneous devices: A survey
    Xu, Chenhao
    Qu, Youyang
    Xiang, Yong
    Gao, Longxiang
    COMPUTER SCIENCE REVIEW, 2023, 50
  • [23] Asynchronous Decentralized Federated Learning for Heterogeneous Devices
    Liao, Yunming
    Xu, Yang
    Xu, Hongli
    Chen, Min
    Wang, Lun
    Qiao, Chunming
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, : 4535 - 4550
  • [24] Online Federated Learning via Non-Stationary Detection and Adaptation Amidst Concept Drift
    Ganguly, Bhargav
    Aggarwal, Vaneet
    IEEE-ACM TRANSACTIONS ON NETWORKING, 2024, 32 (01) : 643 - 653
  • [25] Efficient Asynchronous Federated Learning for AUV Swarm
    Meng, Zezhao
    Li, Zhi
    Hou, Xiangwang
    Du, Jun
    Chen, Jianrui
    Wei, Wei
    SENSORS, 2022, 22 (22)
  • [26] On learning guarantees to unsupervised concept drift detection on data streams
    de Mello, Rodrigo F.
    Vaz, Yule
    Grossi, Carlos H.
    Bifet, Albert
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 117 : 90 - 102
  • [27] Learning from streaming data with concept drift and imbalance: an overview
    Hoens, T. Ryan
    Polikar, Robi
    Chawla, Nitesh V.
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2012, 1 (01) : 89 - 101
  • [28] Active Learning Method for Imbalanced Concept Drift Data Stream
    Li Y.-H.
    Wang T.-T.
    Wang S.-G.
    Li D.-Y.
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (03): : 589 - 606
  • [29] Incremental Learning of Concept Drift from Streaming Imbalanced Data
    Ditzler, Gregory
    Polikar, Robi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (10) : 2283 - 2301
  • [30] Efficient asynchronous federated learning with sparsification and quantization
    Jia, Juncheng
    Liu, Ji
    Zhou, Chendi
    Tian, Hao
    Dong, Mianxiong
    Dou, Dejing
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2024, 36 (09):