Optimal design for curve estimation by local linear smoothing

被引:20
|
作者
Cheng, MY
Hall, P [1 ]
Titterington, DM
机构
[1] Australian Natl Univ, Ctr Math & Applicat, Canberra, ACT 0200, Australia
[2] Natl Chung Cheng Univ, Inst Stat Math, Chiayi, Taiwan
[3] Univ Glasgow, Dept Stat, Glasgow G12 8QW, Lanark, Scotland
关键词
bandwidth choice; local linear regression; mean squared error; nonlinear regression; optimal design; sequential design;
D O I
10.2307/3318529
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The integral of the mean squared error of an estimator of a regression function is used as a criterion for defining an optimal design measure in the context of local linear regression, when the bandwidth is chosen in a locally optimal manner. An algorithm is proposed that constructs a sequence of piecewise uniform designs with the help of current estimates of the integral of the mean squared error. These estimates do not require direct estimation of the second derivative of the regression function. Asymptotic properties of the algorithm are established and numerical results illustrate the gains that can be made, relative to a uniform design, by using the optimal design or sub-optimal, piecewise uniform designs. The behaviour of the algorithm in practice is also illustrated. 1350-7265 (C) 1998 Chapman & Hall.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 50 条
  • [21] LINEAR SMOOTHING AS AN OPTIMAL-CONTROL PROBLEM
    PICCIONI, M
    SIGNAL PROCESSING, 1988, 15 (01) : 85 - 89
  • [22] Trajectory Smoothing as a Linear Optimal Control Problem
    Dey, Biswadip
    Krishnaprasad, P. S.
    2012 50TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2012, : 1490 - 1497
  • [23] OPTIMAL LINEAR SMOOTHING - CONTINUOUS DATA CASE
    LAINIOTIS, DG
    INTERNATIONAL JOURNAL OF CONTROL, 1973, 17 (05) : 921 - 930
  • [24] OPTIMAL SMOOTHING IN LINEAR DISCRETE-SYSTEMS
    AKHMEROV, MA
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII AVIATSIONAYA TEKHNIKA, 1979, (04): : 1 - 9
  • [25] DESIGN FOR ASYMPTOTICALLY OPTIMAL SMOOTHING FILTERS
    SAEZ, A
    MUNOZ, RA
    ZENATO, A
    ACTA CIENTIFICA VENEZOLANA, 1977, 28 : 101 - 101
  • [26] Optimal design for adaptive smoothing splines
    Wang, Jiali
    Verbyla, Aranas P.
    Jiang, Bomin
    Zwart, Alexander B.
    Ong, Cheng Soon
    Sirault, Xavier R. R.
    Verbyla, Klara L.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 206 : 263 - 277
  • [27] Smoothing regression quantile by combining k-NN estimation with local linear kernel fitting
    Yu, KM
    STATISTICA SINICA, 1999, 9 (03) : 759 - 774
  • [28] On the role of the shrinkage parameter in local linear smoothing
    Peter Hall
    J. Stephen Marron
    Probability Theory and Related Fields, 1997, 108 : 495 - 516
  • [29] On the role of the shrinkage parameter in local linear smoothing
    Hall, P
    Marron, JS
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (04) : 495 - 516
  • [30] Estimation of the functional linear regression with smoothing splines
    Crambes, Christophe
    Kneip, Alois
    Sarda, Pascal
    FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 117 - +