RadarSpecAugment: A Simple Data Augmentation Method for Radar-Based Human Activity Recognition

被引:6
|
作者
She, Donghong [1 ]
Lou, Xin [2 ]
Ye, Wenbin [1 ,3 ]
机构
[1] Shenzhen Univ, Sch Optoelect Engn, Shenzhen 518060, Peoples R China
[2] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[3] Shenzhen Univ, Sch Elect Sci & Technol, Shenzhen 518060, Peoples R China
关键词
Sensor signal processing; augmentation; human activity recognition (HAR); micro-Doppler radar; MICRO-DOPPLER SIGNATURES; CLASSIFICATION;
D O I
10.1109/LSENS.2021.3061561
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this letter, a simple data augmentation method for micro-Doppler radar-based human activity recognition (HAR) is proposed. The proposed augmentation method can improve the performance of a neural network with insufficient training samples. It is applied directly to the spectrograms of the human activity radar data. The augmentation strategy consists of three operations: 1) time shift, 2) frequency disturbance, and 3) frequency shift. Without destroying this kinematic information in the spectrograms, the three operations are used to change the three attributes, i.e., dynamic-static state, instantaneous speed, and overall speed, of human motion spectrograms. The experimental results show that the proposed augmentation method can significantly improve the recognition accuracy of different classic deep models used in radar-based HAR. Moreover, we performed another experiment that utilizes the different groups of volunteers' data for training and testing. The results reveal that the generalization ability of the network can be significantly improved by the proposed augmentation method.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Radar-based human activity recognition with adaptive thresholding towards resource constrained platforms
    Zhenghui Li
    Julien Le Kernec
    Qammer Abbasi
    Francesco Fioranelli
    Shufan Yang
    Olivier Romain
    Scientific Reports, 13
  • [22] Radar-based human activity recognition with adaptive thresholding towards resource constrained platforms
    Li, Zhenghui
    Le Kernec, Julien
    Abbasi, Qammer
    Fioranelli, Francesco
    Yang, Shufan
    Romain, Olivier
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [23] Supervised Domain Adaptation for Few-Shot Radar-Based Human Activity Recognition
    Li, Xinyu
    He, Yuan
    Zhang, J. Andrew
    Jing, Xiaojun
    IEEE SENSORS JOURNAL, 2021, 21 (22) : 25880 - 25890
  • [24] Radar-Based Human Activity Recognition With 1-D Dense Attention Network
    Lai, Guoji
    Lou, Xin
    Ye, Wenbin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [25] Radar-based human activity recognition using denoising techniques to enhance classification accuracy
    Yu, Ran
    Du, Yaxin
    Li, Jipeng
    Napolitano, Antonio
    Le Kernec, Julien
    IET RADAR SONAR AND NAVIGATION, 2024, 18 (02): : 277 - 293
  • [26] Radar-based Human Activity Acquisition, Classification and Recognition towards Elderly Fall Prediction
    Beranger, Claire
    Bordat, Alexandre
    Khelif, Mohamed Amine
    Dobias, Petr
    Vu, Ngoc-Son
    Le Kernec, Julien
    Guyard, David
    Romain, Olivier
    2023 26TH EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN, DSD 2023, 2023, : 95 - 102
  • [27] Physics-Aware Generative Adversarial Networks for Radar-Based Human Activity Recognition
    Rahman, Mohammed Mahbubur
    Gurbuz, Sevgi Z.
    Amin, Moeness G.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (03) : 2994 - 3008
  • [28] A MIMO Radar-Based Metric Learning Approach for Activity Recognition
    Aziz, Fady
    Metwally, Omar
    Weller, Pascal
    Schneider, Urs
    Huber, Marco F.
    2022 IEEE RADAR CONFERENCE (RADARCONF'22), 2022,
  • [29] Human Activity Recognition Method Based on Scattering Separation Using Multifrequency Radar Data
    Li, Weiyi
    Liu, Jiangang
    Guo, Shisheng
    Jia, Yong
    IEEE SENSORS LETTERS, 2024, 8 (10)
  • [30] Radar-Based Human Activity Recognition Using Time-Weighted Network Based on Strip Pooling
    Ai, Wentao
    Xu, Hongji
    Li, Jianjun
    Li, Xiaoman
    Li, Xinya
    Li, Yiran
    Li, Shijie
    Xu, Zhikai
    Yu, Yonghui
    IEEE Internet of Things Journal, 2025, 12 (06) : 6633 - 6645