A Taylor series approach to pricing and implied volatility for local-stochastic volatility models

被引:9
|
作者
Lorig, Matthew [1 ]
Pagliarani, Stefano [2 ]
Pascucci, Andrea [3 ]
机构
[1] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
[2] Ecole Polytech, CMAP, F-91128 Palaiseau, France
[3] Univ Bologna, Dipartimento Matemat, Bologna, Italy
来源
JOURNAL OF RISK | 2014年 / 17卷 / 02期
基金
美国国家科学基金会;
关键词
HESTON MODEL; OPTIONS; SMILE;
D O I
10.21314/JOR.2014.297
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Using classical Taylor series techniques, we develop a unified approach to pricing and implied volatility for European-style options in a general local-stochastic volatility setting. Our price approximations require only a normal cumulative distribution function and our implied volatility approximations are fully explicit (ie, they require no special functions, no infinite series and no numerical integration). As such, approximate prices can be computed as efficiently as Black-Scholes prices, and approximate implied volatilities can be computed nearly instantaneously.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 50 条
  • [1] EXPLICIT IMPLIED VOLATILITIES FOR MULTIFACTOR LOCAL-STOCHASTIC VOLATILITY MODELS
    Lorig, Matthew
    Pagliarani, Stefano
    Pascucci, Andrea
    [J]. MATHEMATICAL FINANCE, 2017, 27 (03) : 926 - 960
  • [2] Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations and Implied Sharpe Ratio
    Lorig, Matthew
    Sircar, Ronnie
    [J]. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2016, 7 (01): : 418 - 447
  • [3] The forward smile in local-stochastic volatility models
    Mazzon, Andrea
    Pascucci, Andrea
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (03) : 1 - 29
  • [4] Calibration of local-stochastic volatility models by optimal transport
    Guo, Ivan
    Loeper, Gregoire
    Wang, Shiyi
    [J]. MATHEMATICAL FINANCE, 2022, 32 (01) : 46 - 77
  • [5] An asymptotic expansion for local-stochastic volatility with jump models
    Shiraya, Kenichiro
    Takahashi, Akihiko
    [J]. STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2017, 89 (01): : 65 - 88
  • [6] Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models
    Shiraya, Kenichiro
    Takahashi, Akihiko
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 303 - 333
  • [7] Computing the implied volatility in stochastic volatility models
    Berestycki, H
    Busca, J
    Florent, I
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2004, 57 (10) : 1352 - 1373
  • [8] Implied Stochastic Volatility Models
    Ait-Sahalia, Yacine
    Li, Chenxu
    Li, Chen Xu
    [J]. REVIEW OF FINANCIAL STUDIES, 2021, 34 (01): : 394 - 450
  • [9] ASYMPTOTICS OF IMPLIED VOLATILITY IN LOCAL VOLATILITY MODELS
    Gatheral, Jim
    Hsu, Elton P.
    Laurence, Peter
    Ouyang, Cheng
    Wang, Tai-Ho
    [J]. MATHEMATICAL FINANCE, 2012, 22 (04) : 591 - 620
  • [10] An approximation formula for normal implied volatility under general local stochastic volatility models
    Karami, Yasaman
    Shiraya, Kenichiro
    [J]. JOURNAL OF FUTURES MARKETS, 2018, 38 (09) : 1043 - 1061