An asymptotic expansion for local-stochastic volatility with jump models

被引:3
|
作者
Shiraya, Kenichiro [1 ]
Takahashi, Akihiko [1 ]
机构
[1] Univ Tokyo, Grad Sch Econ, Tokyo, Japan
关键词
Asymptotic expansion; local volatility; stochastic volatility; jump-diffusion; AVERAGE OPTIONS;
D O I
10.1080/17442508.2015.1136630
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops an asymptotic expansion method for general stochastic differential equations with jumps and their functions. By applying the method, we derive an explicit approximation formula for pricing options on functions of multiple assets under local-stochastic volatility with jump models. Moreover, we present numerical examples for pricing basket options based on the parameters calibrated to the actual market data, which confirms the validity of our method in practice.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
  • [1] The forward smile in local-stochastic volatility models
    Mazzon, Andrea
    Pascucci, Andrea
    JOURNAL OF COMPUTATIONAL FINANCE, 2017, 20 (03) : 1 - 29
  • [2] Calibration of local-stochastic volatility models by optimal transport
    Guo, Ivan
    Loeper, Gregoire
    Wang, Shiyi
    MATHEMATICAL FINANCE, 2022, 32 (01) : 46 - 77
  • [3] Pricing Average and Spread Options Under Local-Stochastic Volatility Jump-Diffusion Models
    Shiraya, Kenichiro
    Takahashi, Akihiko
    MATHEMATICS OF OPERATIONS RESEARCH, 2019, 44 (01) : 303 - 333
  • [4] A Taylor series approach to pricing and implied volatility for local-stochastic volatility models
    Lorig, Matthew
    Pagliarani, Stefano
    Pascucci, Andrea
    JOURNAL OF RISK, 2014, 17 (02): : 3 - 19
  • [5] EXPLICIT IMPLIED VOLATILITIES FOR MULTIFACTOR LOCAL-STOCHASTIC VOLATILITY MODELS
    Lorig, Matthew
    Pagliarani, Stefano
    Pascucci, Andrea
    MATHEMATICAL FINANCE, 2017, 27 (03) : 926 - 960
  • [6] Small-Time Asymptotics under Local-Stochastic Volatility with a Jump-to-Default: Curvature and the Heat Kernel Expansion
    Armstrong, John
    Forde, Martin
    Lorig, Matthew
    Zhang, Hongzhong
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2017, 8 (01): : 82 - 113
  • [7] Calibration of local-stochastic and path-dependent volatility models to vanilla and no-touch options
    Bain, Alan
    Mariapragassam, Matthieu
    Reisinger, Christoph
    JOURNAL OF COMPUTATIONAL FINANCE, 2021, 24 (04) : 115 - 161
  • [8] Asymptotic expansion for some local volatility models arising in finance
    Sergio Albeverio
    Francesco Cordoni
    Luca Di Persio
    Gregorio Pellegrini
    Decisions in Economics and Finance, 2019, 42 : 527 - 573
  • [9] Asymptotic expansion for some local volatility models arising in finance
    Albeverio, Sergio
    Cordoni, Francesco
    Di Persio, Luca
    Pellegrini, Gregorio
    DECISIONS IN ECONOMICS AND FINANCE, 2019, 42 (02) : 527 - 573
  • [10] Introducing two mixing fractions to a lognormal local-stochastic volatility model
    Lee, Geoffrey
    Owens, Bowie
    Zhu, Zili
    JOURNAL OF COMPUTATIONAL FINANCE, 2020, 24 (03) : 41 - 58