MoSe2-Covered N,P-Doped Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries

被引:488
|
作者
Niu, Feier [1 ]
Yang, Jing [1 ]
Wang, Nana [2 ]
Zhang, Dapeng [1 ]
Fan, Weiliu [1 ]
Yang, Jian [1 ]
Qian, Yitai [1 ,3 ]
机构
[1] Shandong Univ, Sch Chem & Chem Engn, Key Lab Colloid & Interface Chem, Minist Educ, Jinan 250100, Peoples R China
[2] Taiyuan Univ Technol, Res Inst Surface Engn, Taiyuan 030024, Peoples R China
[3] Univ Sci & Technol China, Dept Chem, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China
关键词
carbon; chalcogenides; nanomaterials; pseudocapacitance; sodium-ion batteries; HIGH-PERFORMANCE ANODE; ENHANCED ELECTROCHEMICAL PERFORMANCE; MOLYBDENUM DISELENIDE NANOSHEETS; TOTAL-ENERGY CALCULATIONS; REDUCED GRAPHENE OXIDE; LITHIUM-ION; OXYGEN REDUCTION; DOPED GRAPHENE; CYCLE-LIFE; NA-ION;
D O I
10.1002/adfm.201700522
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MoSe2 grown on N,P-co-doped carbon nanosheets is synthesized by a solvothermal reaction followed with a high-temperature calcination. This composite has an interlayer spacing of MoSe2 expanded to facilitate sodium-ion diffusion, MoSe2 immobilized on carbon nanosheets to improve charge-transfer kinetics, and N and P incorporated into carbon to enhance its interaction with active species upon cycling. These features greatly improve the electrochemical performance of this composite, as compared to all the controls. It presents a specific capacity of 378 mAh g(-1) after 1000 cycles at 0.5 A g(-1), corresponding to 87% of the capacity at the second cycle. Ex situ Raman spectra and high-resolution transmission electron microscopy images confirm that it is element Se, rather than MoSe2, formed after the charging process. The interaction of the active species with modified carbon is simulated using density functional theory to explain this excellent stability. The superior rate capability, where the capacity at 15 A g(-1) equals approximate to 55% of that at 0.5 A g(-1), could be associated with the significant contribution of pseudo-capacitance. By pairing with homemade Na3V2(PO4)(3)/C, this composite also exhibits excellent performances in full cells.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Mesoporous NiS2 Nanospheres Anode with Pseudocapacitance for High-Rate and Long-Life Sodium-Ion Battery
    Sun, Ruimin
    Liu, Sijie
    Wei, Qiulong
    Sheng, Jinzhi
    Zhu, Shaohua
    An, Qinyou
    Mai, Liqiang
    SMALL, 2017, 13 (39)
  • [22] WSe2/CoSe2 nanocrystals in situ growth on three-dimensional carbon nanofibers as anode material for long-life and high-rate sodium-ion batteries
    Wen, Daofeng
    Zhang, Haiyan
    Lin, Zihua
    Yang, Changsheng
    Wan, Baoshan
    Gao, Heng
    Li, Shengkai
    Zhang, Shangshang
    Wang, Yan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 937
  • [23] FeSe2@C Microrods as a Superior Long-Life and High-Rate Anode for Sodium Ion Batteries
    Pan, Qichang
    Zhang, Man
    Zhang, Lixuan
    Li, Yahao
    Li, Yu
    Tan, Chunlei
    Zheng, Fenghua
    Huang, Youguo
    Wang, Hongqiang
    Li, Qingyu
    ACS NANO, 2020, 14 (12) : 17683 - 17692
  • [24] Interconnected MoO2/MoS2@NC nanosheets as anodes with high-rate and long-life for lithium-ion and sodium-ion batteries
    Sun, Xiaolei
    Yang, Jinchuan
    Chen, Yao
    Luo, Feng
    CHEMICAL ENGINEERING JOURNAL, 2024, 495
  • [25] SnO2-Al2O3-graphite nanosheets as a long-life and high-rate anode material for lithium-ion batteries
    Huang, Xiping
    Feng, Yefeng
    Bai, Chen
    Wu, Kaidan
    Ke, Jin
    Xiong, Deping
    He, Miao
    CHEMICAL PHYSICS LETTERS, 2020, 749
  • [26] Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries
    Zhang, Kai
    Park, Mihui
    Zhang, Jing
    Lee, Gi-Hyeok
    Shin, Jeongyim
    Kang, Yong-Mook
    NANO RESEARCH, 2017, 10 (12) : 4337 - 4350
  • [27] Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: Promising anode material with high rate capability and long cycle life for sodium-ion batteries
    Kai Zhang
    Mihui Park
    Jing Zhang
    Gi-Hyeok Lee
    Jeongyim Shin
    Yong-Mook Kang
    Nano Research, 2017, 10 : 4337 - 4350
  • [28] Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries
    Luo, Wei
    Schardt, Jenna
    Bommier, Clement
    Wang, Bao
    Razink, Joshua
    Simonsen, John
    Ji, Xiulei
    Journal of Materials Chemistry C, 2013, 1 (36): : 10662 - 10666
  • [29] Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries
    Luo, Wei
    Schardt, Jenna
    Bommier, Clement
    Wang, Bao
    Razink, Joshua
    Simonsen, John
    Ji, Xiulei
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (36) : 10662 - 10666
  • [30] Carbon-Coated Na3.32Fe2.34( P2O7)2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries
    Chen, Mingzhe
    Chen, Lingna
    Hu, Zhe
    Liu, Qiannan
    Zhang, Binwei
    Hu, Yuxiang
    Gu, Qinfen
    Wang, Jian-Li
    Wang, Lian-Zhou
    Guo, Xiaodong
    Chou, Shu-Lei
    Dou, Shi-Xue
    ADVANCED MATERIALS, 2017, 29 (21)