Crutch Tip for Swing-through Crutch Walking Control Based on a Kinetic Shape

被引:0
|
作者
Capecci, Daniel [1 ]
Kim, Seok Hun [2 ]
Reed, Kyle B. [1 ]
Handzic, Ismet [1 ]
机构
[1] Univ S Florida, Dept Mech Engn, Tampa, FL 33620 USA
[2] Univ S Florida, Sch Phys Therapy & Rehabil Sci, Tampa, FL 33620 USA
基金
美国国家科学基金会;
关键词
WEIGHT-BEARING; GAIT;
D O I
暂无
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This paper illustrates the dynamic effects of using a kinetic shape as a crutch tip on swing through crutch walking (non-weight bearing). The overground crutch walking of four participants was measured to examine the effect of a Kinetic Crutch Tip (KCT) on step length and swing time using a ProtoKinetics (R) Zeno Walkway System. Changes in ground reaction forces during the crutch gait cycle were examined by having the participants walk on an instrumented treadmill. We quantify changes in crutch dynamics by comparing results to standard rubber point tip crutch walking. The results showed that introducing a KCT to crutch walking can alter step length and swing time asymmetries during overground walking. Participants walking with a forward forcing KCT experienced a reduction in the horizontal ground reaction forces of up to 74% compared to walking on standard rubber crutch tips. The backward forcing KCT reduced the heel strike peak forces by as much as 27%. These findings show that crutch walking dynamics can be customized and optimized to yield a specific crutch walking behavior tailored to various user needs or walking environments.
引用
收藏
页码:612 / 617
页数:6
相关论文
共 31 条
  • [31] Control of rotor tip leakage through cooling injection from casing in a high-work turbine: Computational investigation using a feature-based jet model
    Mischo, Bob
    Burdet, Andre
    Behr, Thomas
    Abhari, Reza S.
    PROCEEDINGS OF THE ASME TURBO EXPO 2007, VOL 6, PTS A AND B, 2007, : 1343 - 1355