Hybrid of Time Series Regression, Multivariate Generalized Space-Time Autoregressive, and Machine Learning for Forecasting Air Pollution

被引:1
|
作者
Prabowo, Hendri [1 ]
Prastyo, Dedy Dwi [1 ]
Setiawan [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Stat, Kampus ITS, Surabaya 60111, Indonesia
来源
关键词
Air pollution; Forecast; Hybrid; Machine learning; Space-time; NEURAL-NETWORK;
D O I
10.1007/978-981-16-7334-4_26
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The purpose of this study is to propose a new hybrid of space-time models by combining the time series regression (TSR), multivariate generalized space-time autoregressive (MGSTAR), and machine learning (ML) to forecast air pollution data in the city of Surabaya. The TSR model is used to capture linear patterns of data, especially trends and double seasonal. The MGSTAR model is employed to capture the relationship between locations, and the ML model is used to capture nonlinear patterns from the data. There are three ML models used in this study, namely feed-forward neural network (FFNN), deep learning neural network (DLNN), and long short-term memory (LSTM). So that there are three hybrid models used in this study, namely TSR-MGSTAR-FFNN, TSR-MGSTAR-DLNN, and TSR-MGSTAR-LSTM. The hybrid models will be used to forecast air pollution data consisting of CO, PM10, and NO2 at three locations in Surabaya simultaneously. Then, the performance of these three-combined hybrid models will be compared with the individual model of TSR and MGSTAR, two-combined hybrid models of MGSTAR-FFNN, MGSTAR-DLNN, MGSTAR-LSTM, and hybrid TSR-MGSTAR models based on the RMSE and sMAPE values in the out-of-sample data. Based on the smallest RMSE and sMAPE values, the analysis results show that the best model for forecasting CO is MGSTAR, forecasting PM10 is hybrid TSR-MGSTAR, and forecasting NO2 is hybrid TSR-MGSTAR-FFNN. In general, the hybrid model has better accuracy than the individual models. This result is in line with the results of the M3 and M4 forecasting competition.
引用
收藏
页码:351 / 365
页数:15
相关论文
共 50 条
  • [21] Leveraging Hybrid Deep Learning Models for Enhanced Multivariate Time Series Forecasting
    Mahmoud, Amal
    Mohammed, Ammar
    NEURAL PROCESSING LETTERS, 2024, 56 (05)
  • [22] Topological machine learning for multivariate time series
    Wu, Chengyuan
    Hargreaves, Carol Anne
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2022, 34 (02) : 311 - 326
  • [23] Evaluating forecasting accuracy of the temporally aggregated space-time autoregressive model
    Percoco, Marco
    APPLIED ECONOMICS LETTERS, 2007, 14 (7-9) : 637 - 641
  • [24] Machine Learning Strategies for Time Series Forecasting
    Bontempi, Gianluca
    Ben Taieb, Souhaib
    Le Borgne, Yann-Ael
    BUSINESS INTELLIGENCE, EBISS 2012, 2013, 138 : 62 - 77
  • [25] Machine Learning Advances for Time Series Forecasting
    Masini, Ricardo P.
    Medeiros, Marcelo C.
    Mendes, Eduardo F.
    JOURNAL OF ECONOMIC SURVEYS, 2023, 37 (01) : 76 - 111
  • [26] Machine Learning Tools to Time Series Forecasting
    Ramirez-Amaro, K.
    Chimal-Eguia, J. C.
    MICAI 2007: SIXTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2008, : 91 - 101
  • [27] A hybrid support vector regression for time series forecasting
    Xiang, Ling
    Zhu, Yongli
    Tang, Gui-ji
    2009 WRI WORLD CONGRESS ON SOFTWARE ENGINEERING, VOL 4, PROCEEDINGS, 2009, : 161 - 165
  • [28] Hybrid Machine Learning for Forecasting and Monitoring Air Pollution in Surabaya
    Suhartono
    Choiruddin, Achmad
    Prabowo, Hendri
    Lee, Muhammad Hisyam
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2021, 2021, 1489 : 366 - 380
  • [29] Learning evolving relations for multivariate time series forecasting
    Binh Nguyen-Thai
    Vuong Le
    Ngoc-Dung T. Tieu
    Truyen Tran
    Svetha Venkatesh
    Naeem Ramzan
    Applied Intelligence, 2024, 54 : 3918 - 3932
  • [30] Learning evolving relations for multivariate time series forecasting
    Nguyen-Thai, Binh
    Le, Vuong
    Tieu, Ngoc-Dung T.
    Tran, Truyen
    Venkatesh, Svetha
    Ramzan, Naeem
    APPLIED INTELLIGENCE, 2024, 54 (05) : 3918 - 3932