Brunn-Minkowski inequalities for contingency tables and integer flows

被引:11
|
作者
Barvinok, Alexander [1 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
contingency tables; permanent; Brunn-Minkowski inequality; flow polytopes; integer points; log-concave functions; matrix scaling;
D O I
10.1016/j.aim.2006.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish approximate log-concavity for a wide family of combinatorially defined integer-valued functions. Examples include the number of non-negative integer matrices (contingency tables) with prescribed row and column sums (margins), as a function of the margins and the number of integer feasible flows in a network, as a function of the excesses at the vertices. As a corollary, we obtain approximate log-concavity for the Kostant partition function of type A. We also present an indirect evidence that at least some of the considered functions might be genuinely log-concave. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:105 / 122
页数:18
相关论文
共 50 条
  • [11] Brunn-Minkowski and Zhang inequalities for convolution bodies
    Alonso-Gutierrez, David
    Hugo Jimenez, C.
    Villa, Rafael
    ADVANCES IN MATHEMATICS, 2013, 238 : 50 - 69
  • [12] Functional Brunn-Minkowski inequalities induced by polarity
    Artstein-Avidan, S.
    Florentin, D. I.
    Segal, A.
    ADVANCES IN MATHEMATICS, 2020, 364
  • [13] Stability of inequalities in the dual Brunn-Minkowski theory
    Gardner, RJ
    Vassallo, S
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 231 (02) : 568 - 587
  • [14] On a method to disprove generalized Brunn-Minkowski inequalities
    Juillet, Nicolas
    PROBABILISTIC APPROACH TO GEOMETRY, 2010, 57 : 189 - 198
  • [15] On discrete Brunn-Minkowski and isoperimetric type inequalities
    Iglesias, David
    Lucas, Eduardo
    Yepes Nicolas, Jesus
    DISCRETE MATHEMATICS, 2022, 345 (01)
  • [16] From brunn-minkowski to sharp sobolev inequalities
    Bobkov, S. G.
    Ledoux, M.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) : 369 - 384
  • [17] On discrete Lp Brunn-Minkowski type inequalities
    Hernandez Cifre, Maria A.
    Lucas, Eduardo
    Yepes Nicolas, Jesus
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (04)
  • [18] The Openness Conjecture and Complex Brunn-Minkowski Inequalities
    Berndtsson, Bo
    COMPLEX GEOMETRY AND DYNAMICS, 2015, : 29 - 44
  • [19] Killed Brownian motion and the Brunn-Minkowski inequalities
    Le, Huiling
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2012, 153 : 111 - 121
  • [20] The φ-Brunn-Minkowski inequalities for general convex bodies
    Lai, Dandan
    Jin, Hailin
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):