Collisions of False-Vacuum Bubble Walls in a Quantum Spin Chain

被引:32
|
作者
Milsted, Ashley [1 ,2 ,3 ,4 ]
Liu, Junyu [1 ,2 ]
Preskill, John [1 ,2 ,4 ]
Vidal, Guifre [3 ,5 ]
机构
[1] CALTECH, Walter Burke Inst Theoret Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Perimeter Inst Theoret Phys, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
[4] AWS CTR Quantum Comp, Pasadena, CA 91125 USA
[5] Sandbox Alphabet, Mountain View, CA 94043 USA
来源
PRX QUANTUM | 2022年 / 3卷 / 02期
关键词
ISING-MODEL; FIELD; MATRIX; STATES; FATE;
D O I
10.1103/PRXQuantum.3.020316
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We simulate, using nonperturbative methods, the real-time dynamics of small bubbles of "false vacuum" in a quantum spin chain near criticality, where the low-energy physics is described by a relativistic (1+1)-dimensional quantum field theory. We consider bubbles whose walls are kink and antikink quasiparticle excitations, so that wall collisions are kink-antikink scattering events. To construct these bubbles in the presence of strong correlations, we extend a recently proposed matrix product state (MPS) ansatz for quasiparticle wavepackets. We simulate dynamics within a window of about 1000 spins embedded in an infinite chain at energies of up to about 5 times the mass gap. By choosing the wavepacket width and the bubble size appropriately, we avoid strong lattice effects and observe relativistic kink-antikink collisions. We use the MPS quasiparticle ansatz to detect scattering outcomes. (i) In the Ising model, with transverse and longitudinal fields, we do not observe particle production despite nonintegrability (supporting recent observations of nonthermalizing states in this model). (ii) Switching on an additional interaction, we see production of confined and unconfined particle pairs. We characterize the amount of entanglement generated as a function of energy and time and conclude that our classical simulation methods will ultimately fail as these increase. We anticipate that kink-antikink scattering in 1+1 dimensions will be an instructive benchmark problem for future quantum computers and analog quantum simulators.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] FALSE-VACUUM DECAY INDUCED BY A 2-PARTICLE COLLISION IN 2-DIMENSIONS
    KISELEV, VG
    PHYSICAL REVIEW D, 1992, 45 (08): : 2929 - 2932
  • [22] False vacuum decay induced by particle collisions
    Kuznetsov, AN
    Tinyakov, PG
    PHYSICAL REVIEW D, 1997, 56 (02): : 1156 - 1169
  • [23] Vacuum bubble collisions: From microphysics to gravitational waves
    Gould, Oliver
    Sukuvaara, Satumaaria
    Weir, David
    PHYSICAL REVIEW D, 2021, 104 (07)
  • [24] How to run through walls: Dynamics of bubble and soliton collisions
    Giblin, John T., Jr.
    Hui, Lam
    Lim, Eugene A.
    Yang, I-Sheng
    PHYSICAL REVIEW D, 2010, 82 (04):
  • [25] False vacuum decay via bubble formation in ferromagnetic superfluids
    A. Zenesini
    A. Berti
    R. Cominotti
    C. Rogora
    I. G. Moss
    T. P. Billam
    I. Carusotto
    G. Lamporesi
    A. Recati
    G. Ferrari
    Nature Physics, 2024, 20 : 558 - 563
  • [26] False vacuum decay via bubble formation in ferromagnetic superfluids
    Zenesini, A.
    Berti, A.
    Cominotti, R.
    Rogora, C.
    Moss, I. G.
    Billam, T. P.
    Carusotto, I.
    Lamporesi, G.
    Recati, A.
    Ferrari, G.
    NATURE PHYSICS, 2024, 20 (04) : 558 - 563
  • [27] False vacuum decay rate from thin to thick walls
    Marco Matteini
    Miha Nemevšek
    Yutaro Shoji
    Lorenzo Ubaldi
    Journal of High Energy Physics, 2025 (4)
  • [28] Properties of the false vacuum as a quantum unstable state
    K. Urbanowski
    Theoretical and Mathematical Physics, 2017, 190 : 458 - 469
  • [29] PROPERTIES OF THE FALSE VACUUM AS A QUANTUM UNSTABLE STATE
    Urbanowski, K.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 190 (03) : 458 - 469
  • [30] Magnetic seed field generation from electroweak bubble collisions with bubble walls of finite thickness
    Stevens, Trevor
    Johnson, Mikkel B.
    PHYSICAL REVIEW D, 2009, 80 (08):