Effects of plant growth-promoting rhizobacteria on loblolly and slash pine seedlings

被引:0
|
作者
Enebak, SA
Wei, G
Kloepper, JW
机构
[1] Auburn Univ, Sch Forestry, Auburn, AL 36849 USA
[2] Auburn Univ, Dept Plant Pathol, Auburn, AL 36849 USA
关键词
germination; Pinus taeda L; Pinus elliottii (Engelm.); PGPR; seedling growth;
D O I
暂无
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Loblolly and slash pine seed were inoculated at sowing with 1 of 12 different strains of plant growth-promoting rhizobacteria (PGPR) in the greenhouse, Time to germination and seedling densities were determined at 21 days, and seedling biomass was measured at 12 wk after sowing. All bacterial strains significantly increased the speed of seedling emergence over nontreated pine seed. By 12 wk, however, no differences in stand densities were observed between bacteria-treated and nontreated seed for either pine species. Postemergence damping-off was reduced in loblolly pine when seed was treated with 3 of the 12 bacterial strains; however, postemergence damping-off on slash pine seedlings was not affected by rhizobacteria. Treatment with rhizobacteria had a significant positive and negative effect on seedling growth and biomass, which depended on tree species. Loblolly pine shoot and root lengths, as well as the above-and belowground biomass, were significantly reduced when seeds were treated with strains BS1 and BS2. In contrast, loblolly pine seeds treated with strains BS3, PM2, and INR7 significantly increased the below ground biomass of the seedling root systems. Slash pine seedlings had similar interactions with the bacterial strains. Strain BS1 significantly reduced shoot lengths compared with nontreated seeds, while strains 90-166, INR7, and SE49 increased shoot biomass. Slash pine root lengths and biomass were also reduced when treated with strains BS1 and BS2. Unlike loblolly pine, no bacterial strain increased slash pine root length or biomass. Th is study suggests th at the effects of rhizobacteria inoculation on seeding emergence and plant growth are independent and that the effects are species specific.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [41] Mitigating negative impacts of drought on oak seedlings performances through plant growth-promoting rhizobacteria
    Khosravi, Mehri
    Heydari, Mehdi
    Alikhani, Hossein Ali
    Arani, Asghar Mosleh
    Guidi, Lucia
    Bernard, Prevosto
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2025, 375
  • [42] Endophytic colonization of spruce by plant growth-promoting rhizobacteria
    Shishido, M
    Breuil, C
    Chanway, CP
    FEMS MICROBIOLOGY ECOLOGY, 1999, 29 (02) : 191 - 196
  • [43] Applications of free living plant growth-promoting rhizobacteria
    M. Lucy
    E. Reed
    Bernard R. Glick
    Antonie van Leeuwenhoek, 2004, 86 : 1 - 25
  • [44] Plant growth-promoting rhizobacteria used in South Korea
    Jerald Conrad Ibal
    Byung Kwon Jung
    Chang Eon Park
    Jae-Ho Shin
    Applied Biological Chemistry, 2018, 61 : 709 - 716
  • [45] Plant growth-promoting rhizobacteria and root system functioning
    Vacheron, Jordan
    Desbrosses, Guilhem
    Bouffaud, Marie-Lara
    Touraine, Bruno
    Moenne-Loccoz, Yvan
    Muller, Daniel
    Legendre, Laurent
    Wisniewski-Dye, Florence
    Prigent-Combaret, Claire
    FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [46] Alleviation of Submergence Stress in Rice Seedlings by Plant Growth-Promoting Rhizobacteria With ACC Deaminase Activity
    Bal, Himadri Bhusan
    Adhya, Tapan Kumar
    FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2021, 5
  • [47] Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture
    P. N. Bhattacharyya
    D. K. Jha
    World Journal of Microbiology and Biotechnology, 2012, 28 : 1327 - 1350
  • [48] Biocontrol of tomato wilt by plant growth-promoting rhizobacteria
    Guo, JH
    Qi, HY
    Guo, YH
    Ge, HL
    Gong, LY
    Zhang, LX
    Sun, PH
    BIOLOGICAL CONTROL, 2004, 29 (01) : 66 - 72
  • [49] New advances in plant growth-promoting rhizobacteria for bioremediation
    Zhuang, Xuliang
    Chen, Jian
    Shim, Hojae
    Bai, Zhihui
    ENVIRONMENT INTERNATIONAL, 2007, 33 (03) : 406 - 413
  • [50] BIOTECHNOLOGICAL POTENTIAL OF SOYBEAN PLANT GROWTH-PROMOTING RHIZOBACTERIA
    de Paula, Gabriel Ferreira
    Demetrio, Gilberto Bueno
    Matsumoto, Leopoldo Sussumu
    REVISTA CAATINGA, 2021, 34 (02) : 328 - 338