Some algebraic properties of the hyperbolic systems
被引:1
|
作者:
Spagnolo, Sergio
论文数: 0引用数: 0
h-index: 0
机构:
Dipartimento Matemat, I-56127 Pisa, ItalyDipartimento Matemat, I-56127 Pisa, Italy
Spagnolo, Sergio
[1
]
Taglialatela, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bari, Dipartimento Sci Econ, Area Matemat Piano 4, I-70124 Bari, ItalyDipartimento Matemat, I-56127 Pisa, Italy
Taglialatela, Giovanni
[2
]
机构:
[1] Dipartimento Matemat, I-56127 Pisa, Italy
[2] Univ Bari, Dipartimento Sci Econ, Area Matemat Piano 4, I-70124 Bari, Italy
来源:
ANNALI DELL'UNIVERSITA DI FERRARA SEZIONE VII, SCIENZE MATEMATICHE, VOL 52, NO 2
|
2006年
/
52卷
/
02期
关键词:
first order hyperbolic systems;
quasi-symmetrizer;
Glaeser inequality;
D O I:
10.1007/s11565-006-0031-4
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
The technique of quasi-symmetrizer has been applied to the well-posedness of the Cauchy problem for scalar operators [10], [13] and linear systems [5], [15], [4], and to the propagation of analitycity for solutions to semi-linear systems [6]. In all these works, it is assumed that the principal symbol depends only on the time variable. In this note we illustrate, in some special cases, a new property of the quasi-symmetrizer which allows us to generalize the result in [6] to semi-linear systems with coefficients depending also on the space variables [21]. Such a property is closely connected with some interesting inequalities on the eigenvalues of a hyperbolic matrix. We expect that this technique applies also to other problems.
机构:
A. Rényi Mathematical Institute, Hungarian Academy of Sciences, P.O. Box 127, 1364 Budapest, HungaryA. Rényi Mathematical Institute, Hungarian Academy of Sciences, P.O. Box 127, 1364 Budapest, Hungary