ChIP-Chip Designs to Interrogate the Genome of Xenopus Embryos for Transcription Factor Binding and Epigenetic Regulation

被引:6
|
作者
Akkers, Robert C. [1 ]
van Heeringen, Simon J. [1 ]
Manak, J. Robert [2 ,3 ]
Green, Roland D. [2 ]
Stunnenberg, Hendrik G. [1 ]
Veenstra, Gert Jan C. [1 ]
机构
[1] Radboud Univ Nijmegen, Dept Mol Biol, Fac Sci, NL-6525 ED Nijmegen, Netherlands
[2] Roche Nimblegen Inc, Madison, WI USA
[3] Univ Iowa, Dept Biol, Iowa City, IA 52242 USA
来源
PLOS ONE | 2010年 / 5卷 / 01期
基金
美国国家卫生研究院;
关键词
GENE-REGULATION; STEM-CELLS; HISTONE MODIFICATIONS; CHROMATIN STATE; HIGH-RESOLUTION; MAPS; TBP; METHYLATIONS; ROLES; DNA;
D O I
10.1371/journal.pone.0008820
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Chromatin immunoprecipitation combined with genome tile path microarrays or deep sequencing can be used to study genome-wide epigenetic profiles and the transcription factor binding repertoire. Although well studied in a variety of cell lines, these genome-wide profiles have so far been little explored in vertebrate embryos. Principal Findings: Here we report on two genome tile path ChIP-chip designs for interrogating the Xenopus tropicalis genome. In particular, a whole-genome microarray design was used to identify active promoters by close proximity to histone H3 lysine 4 trimethylation. A second microarray design features these experimentally derived promoter regions in addition to currently annotated 5' ends of genes. These regions truly represent promoters as shown by binding of TBP, a key transcription initiation factor. Conclusions: A whole-genome and a promoter tile path microarray design was developed. Both designs can be used to study epigenetic phenomena and transcription factor binding in developing Xenopus embryos.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome
    Mehran Karimzadeh
    Michael M. Hoffman
    Genome Biology, 23
  • [42] Mining discriminative distance context of transcription factor binding sites on ChIP enriched regions
    Kim, Hyunmin
    Kechris, Katherina J.
    Hunter, Lawrence
    BIOINFORMATICS RESEARCH AND APPLICATIONS, PROCEEDINGS, 2007, 4463 : 338 - +
  • [43] On the detection and refinement of transcription factor binding sites using ChIP-Seq data
    Hu, Ming
    Yu, Jindan
    Taylor, Jeremy M. G.
    Chinnaiyan, Arul M.
    Qin, Zhaohui S.
    NUCLEIC ACIDS RESEARCH, 2010, 38 (07) : 2154 - 2167
  • [44] ChIP-nexus enables improved detection of in vivo transcription factor binding footprints
    Qiye He
    Jeff Johnston
    Julia Zeitlinger
    Nature Biotechnology, 2015, 33 : 395 - 401
  • [45] Virtual ChIP-seq: predicting transcription factor binding by learning from the transcriptome
    Karimzadeh, Mehran
    Hoffman, Michael M.
    GENOME BIOLOGY, 2022, 23 (01)
  • [46] Pinpointing transcription factor binding sites from ChIP-seq data with SeqSite
    Wang, Xi
    Zhang, Xuegong
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [47] GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments
    Yevshin, Ivan
    Sharipov, Ruslan
    Valeev, Tagir
    Kel, Alexander
    Kolpakov, Fedor
    NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D61 - D67
  • [48] Optimized detection of transcription factor-binding sites in ChIP-seq experiments
    Elo, Laura L.
    Kallio, Aleksi
    Laajala, Teemu D.
    Hawkins, R. David
    Korpelainen, Eija
    Aittokallio, Tero
    NUCLEIC ACIDS RESEARCH, 2012, 40 (01)
  • [49] Cell-type specificity of ChIP-predicted transcription factor binding sites
    Handstad, Tony
    Rye, Morten
    Mocnik, Rok
    Drablos, Finn
    Saetrom, Pal
    BMC GENOMICS, 2012, 13
  • [50] Five vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding
    Odom, D.
    EJC SUPPLEMENTS, 2010, 8 (05): : 158 - 158