Existence of Concave Positive Solutions for Fractional Sturm-Liouville Boundary Value Problems with p-Laplacian

被引:0
|
作者
Sun Ying [1 ]
Han Zhenlai [1 ]
机构
[1] Univ Jinan, Sch Math, Jinan 250022, Shandong, Peoples R China
关键词
Positive Concave Solution; Sturm-Liouville Boundary Value Problem; p-Laplacian Operator; Captuo Derivative; DIFFERENTIAL-EQUATIONS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, by using fixed point theory, we investigate existence and multiplicity of concave positive solutions for the following Sturm-Liouville boundary value problems with p-Laplacian operator {D-0+(alpha)(phi(p)(D-0+(rho) v(t))) + g(t, v(t), D-0+(gamma) v(t)) = 0 av(0) - bv' (0) = 0, cv(1) + dv' (1) = 0, v '' (0) = 0, D-0+(rho) v(t)vertical bar(t=0) = 0, where phi(p)(s) = vertical bar s vertical bar(p-2) s, p > 1. As an application, an example is given to demonstrate the main result.
引用
收藏
页码:10498 / 10503
页数:6
相关论文
共 50 条