Integrating Knowledge Into End-to-End Speech Recognition From External Text-Only Data

被引:4
|
作者
Bai, Ye [1 ]
Yi, Jiangyan [2 ]
Tao, Jianhua [2 ,3 ]
Wen, Zhengqi [2 ]
Tian, Zhengkun [1 ]
Zhang, Shuai [1 ]
机构
[1] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Automat, NLPR, Beijing 100190, Peoples R China
[3] CAS Ctr Excellence Brain Sci & Intelligence Techn, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
End-to-End; language modeling; speech recognition; teacher-student learning; transfer learning; NETWORK LANGUAGE MODELS;
D O I
10.1109/TASLP.2021.3066274
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Attention-based encoder-decoder (AED) models have achieved promising performance in speech recognition. However, because of the end-to-end training, an AED model is usually trained with speech-text paired data. It is challenging to incorporate external text-only data into AED models. Another issue of the AED model is that it does not use the right context of a text token while predicting the token. To alleviate the above two issues, we propose a unified method called LST (Learn Spelling from Teachers) to integrate knowledge into an AED model from the external text-only data and leverage the whole context in a sentence. The method is divided into two stages. First, in the representation stage, a language model is trained on the text. It can be seen as that the knowledge in the text is compressed into the LM. Then, at the transferring stage, the knowledge is transferred to the AED model via teacher-student learning. To further use the whole context of the text sentence, we propose an LM called causal cloze completer (COR), which estimates the probability of a token, given both the left context and the right context of it. Therefore, with LST training, the AED model can leverage the whole context in the sentence. Different from fusion based methods, which use LM during decoding, the proposed method does not increase any extra complexity at the inference stage. We conduct experiments on two scales of public Chinese datasets AISHELL-1 and AISHELL-2. The experimental results demonstrate the effectiveness of leveraging external text-only data and the whole context in a sentence with our proposed method, compared with baseline hybrid systems and AED model based systems.
引用
收藏
页码:1340 / 1351
页数:12
相关论文
共 50 条
  • [31] IMPROVING UNSUPERVISED STYLE TRANSFER IN END-TO-END SPEECH SYNTHESIS WITH END-TO-END SPEECH RECOGNITION
    Liu, Da-Rong
    Yang, Chi-Yu
    Wu, Szu-Lin
    Lee, Hung-Yi
    2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 640 - 647
  • [32] END-TO-END TRAINING OF A LARGE VOCABULARY END-TO-END SPEECH RECOGNITION SYSTEM
    Kim, Chanwoo
    Kim, Sungsoo
    Kim, Kwangyoun
    Kumar, Mehul
    Kim, Jiyeon
    Lee, Kyungmin
    Han, Changwoo
    Garg, Abhinav
    Kim, Eunhyang
    Shin, Minkyoo
    Singh, Shatrughan
    Heck, Larry
    Gowda, Dhananjaya
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 562 - 569
  • [33] Simple Data Augmented Transformer End-To-End Tibetan Speech Recognition
    Yang, Xiaodong
    Wang, Weizhe
    Yang, Hongwu
    Jiang, Jiaolong
    2020 IEEE 3RD INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP 2020), 2020, : 148 - 152
  • [34] DATA AUGMENTATION FOR END-TO-END CODE-SWITCHING SPEECH RECOGNITION
    Du, Chenpeng
    Li, Hao
    Lu, Yizhou
    Wang, Lan
    Qian, Yanmin
    2021 IEEE SPOKEN LANGUAGE TECHNOLOGY WORKSHOP (SLT), 2021, : 194 - 200
  • [35] End-to-end Named Entity Recognition from English Speech
    Yadav, Hemant
    Ghosh, Sreyan
    Yu, Yi
    Shah, Rajiv Ratn
    INTERSPEECH 2020, 2020, : 4268 - 4272
  • [36] END-TO-END SPEECH RECOGNITION FROM FEDERATED ACOUSTIC MODELS
    Gao, Yan
    Parcollet, Titouan
    Zaiem, Salah
    Fernandez-Marques, Javier
    de Gusmao, Pedro P. B.
    Beutel, Daniel J.
    Lane, Nicholas D.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 7227 - 7231
  • [37] SpecSwap: A Simple Data Augmentation Method for End-to-End Speech Recognition
    Song, Xingchen
    Wu, Zhiyong
    Huang, Yiheng
    Su, Dan
    Meng, Helen
    INTERSPEECH 2020, 2020, : 581 - 585
  • [38] End-to-End Amdo-Tibetan Speech Recognition Based on Knowledge Transfer
    Zhu, Xiaojun
    Huang, Heming
    IEEE ACCESS, 2020, 8 (08): : 170991 - 171000
  • [39] END-TO-END VISUAL SPEECH RECOGNITION WITH LSTMS
    Petridis, Stavros
    Li, Zuwei
    Pantic, Maja
    2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 2592 - 2596
  • [40] An End-to-End model for Vietnamese speech recognition
    Van Huy Nguyen
    2019 IEEE - RIVF INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES (RIVF), 2019, : 307 - 312