On approximate representation of periodic motions at a saddle point

被引:4
|
作者
Martynyuk, AA [1 ]
Nikitina, NV [1 ]
机构
[1] Natl Acad Sci Ukraine, SP Timoshenko Inst Mech, Kiev, Ukraine
关键词
D O I
10.1023/A:1021775901368
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The results of a qualitative analysis of a bistable oscillator are applied to the approximate integration of a system with a closed trajectory about a saddle point.
引用
收藏
页码:1138 / 1144
页数:7
相关论文
共 50 条
  • [21] Construction of Approximate Saddle-Point Strategies for Differential Games in a Hilbert Space
    M. Ramaswamy
    A. J. Shaiju
    Journal of Optimization Theory and Applications, 2009, 141 : 349 - 370
  • [22] Construction of Approximate Saddle-Point Strategies for Differential Games in a Hilbert Space
    Ramaswamy, M.
    Shaiju, A. J.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2009, 141 (02) : 349 - 370
  • [23] Characterizations of Approximate Duality and Saddle Point Theorems for Nonsmooth Robust Vector Optimization
    Sun, Xiangkai
    Tang, Liping
    Zeng, Jing
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (04) : 462 - 482
  • [24] Quasi-periodic Motions of a Pendulum with Vibrating Suspension Point
    R. Wen
    T. T. Li
    B. Zhen
    Journal of Vibration Engineering & Technologies, 2019, 7 : 519 - 532
  • [25] FAMILY OF PERIODIC MOTIONS OF A HEAVY SOLID WITH A FIXED-POINT
    VAGNER, EA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1977, 41 (03): : 567 - 570
  • [26] PERIODIC MOTIONS OF A GYROSTAT WITH A FIXED-POINT IN A NEWTONIAN FIELD
    TSOPA, MP
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1979, 43 (01): : 189 - 192
  • [27] Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance
    Luo, Albert C. J.
    Huang, Jianzhe
    JOURNAL OF VIBRATION AND CONTROL, 2012, 18 (11) : 1661 - 1674
  • [28] Quasi-periodic Motions of a Pendulum with Vibrating Suspension Point
    Wen, R.
    Li, T. T.
    Zhen, B.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2019, 7 (05) : 519 - 532
  • [29] APPROXIMATE FIRST-ORDER PRIMAL-DUAL ALGORITHMS FOR SADDLE POINT PROBLEMS
    Jiang, Fan
    Cai, Xingju
    Wu, Zhongming
    Han, Deren
    MATHEMATICS OF COMPUTATION, 2021, 90 (329) : 1227 - 1262
  • [30] Approximate Dual Averaging Method for Multiagent Saddle-Point Problems with Stochastic Subgradients
    Yuan, Deming
    Yang, Yang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014