NFV-driven intrusion detection for smart manufacturing

被引:3
|
作者
Behnke, Daniel [1 ]
Mueller, Marcel [1 ]
Boek, Patrick-Benjamin [1 ]
Schneider, Stefan [2 ]
Peuster, Manuel [2 ]
Karl, Holger [2 ]
Rocha, Alberto [3 ]
Mesquita, Miguel [3 ]
Bonnet, Jose [3 ]
机构
[1] Weidmuller Grp, Detmold, Germany
[2] Paderborn Univ, Paderborn, Germany
[3] Altice Labs, Aveiro, Portugal
来源
2019 IEEE CONFERENCE ON NETWORK FUNCTION VIRTUALIZATION AND SOFTWARE DEFINED NETWORKS (IEEE NFV-SDN) | 2019年
基金
欧盟地平线“2020”;
关键词
FUTURE;
D O I
10.1109/nfv-sdn47374.2019.9039956
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The significant progress in softwarization of hardware components with technologies like Network Function Virtualization (NFV) enables manifold applications for the industry, especially for smart manufacturing. The gained agility and flexibility leverages data gathering and analysis. In this work, we focus on a very important precondition for networked manufacturing: cyber security. We provide concepts and a first proof-ofwork for an cloud-native NFV-driven Intrusion Detection System using Kubernetes, stating challenges we solved during the process and the used software tools. Focusing on traffic monitoring and filtering to enable certain guidelines to ensure the integrity of the factory network by an automatic reconfiguration of the Network Services.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Intrusion detection based on hybrid classifiers for smart grid
    Song, Chunhe
    Sun, Yingying
    Han, Guangjie
    Rodrigues, Joel J. P. C.
    COMPUTERS & ELECTRICAL ENGINEERING, 2021, 93 (93)
  • [32] A new normative approach to intrusion detection in manufacturing 4.0
    Alem, Salwa
    Espes, David
    Nana, Laurent
    Martin, Eric
    De lamotte, Florent
    IFAC PAPERSONLINE, 2023, 56 (02): : 3692 - 3697
  • [33] Alert Correlation for Cyber-Manufacturing Intrusion Detection
    Wu, Mingtao
    Moon, Young
    47TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 47), 2019, 34 : 820 - 831
  • [34] Grid Interactive Smart Inverter with Intrusion Detection Capability
    Rayane, Khaled
    Abu-Rub, Haitham
    Shadmand, Mohammad
    Bayhan, Sertac
    Benalia, Atallah
    2021 IEEE 12TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2021,
  • [35] Network Intrusion Detection System Embedded on a Smart Sensor
    Macia-Perez, Francisco
    Mora-Gimeno, Francisco J.
    Marcos-Jorquera, Diego
    Antonio Gil-Martinez-Abarca, Juan
    Ramos-Morillo, Hector
    Lorenzo-Fonseca, Iren
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (03) : 722 - 732
  • [36] Architecture of an intelligent Intrusion Detection System for Smart Home
    Graf, Julian
    Neubauer, Katrin
    Fischer, Sebastian
    Hackenberg, Rudolf
    2020 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS (PERCOM WORKSHOPS), 2020,
  • [37] Intrusion Detection System for Cyber-Manufacturing System
    Wu, Mingtao
    Moon, Young B.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2019, 141 (03):
  • [38] An enhanced intrusion detection method for AIM of smart grid
    Zhao H.
    Liu G.
    Sun H.
    Zhong G.
    Pang S.
    Qiao S.
    Lv Z.
    Journal of Ambient Intelligence and Humanized Computing, 2023, 14 (05) : 4827 - 4839
  • [39] A Smart Grid Intrusion Detection System Based on Optimization
    Liu, Gaoyuan
    Sun, Huayi
    Zhong, Guangyuan
    2021 3RD INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS (SPIES 2021), 2021, : 284 - 290
  • [40] A Machine Learning Approach for Intrusion Detection in Smart Cities
    Elsaeidy, Asmaa
    Munasinghe, Kumudu S.
    Sharma, Dharmendra
    Jamalipour, Abbas
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,