New developments in state estimation for nonlinear systems

被引:812
|
作者
Norgaard, M
Poulsen, NK
Ravn, O
机构
[1] Tech Univ Denmark, Dept Math Modelling, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Automat, DK-2800 Lyngby, Denmark
关键词
state estimation; nonlinear filters; interpolation algorithms; multivariable polynomials; extended Kalman filters; parameter estimation;
D O I
10.1016/S0005-1098(00)00089-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
State estimators for nonlinear systems are derived based on polynomial approximations obtained with a multi-dimensional interpolation formula. It is shown that under certain assumptions the estimators perform better than estimators based on Taylor approximations. Nevertheless, the implementation is significantly simpler as no derivatives are required. Thus, it is believed that the new state estimators can replace well-known estimators, such as the extended Kalman filter (EKF) and its higher-order relatives, in most practical applications. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1627 / 1638
页数:12
相关论文
共 50 条
  • [41] Distributed simultaneous state and parameter estimation of nonlinear systems
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jianbang
    Liu, Jinfeng
    Ding, Feng
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 181 : 74 - 86
  • [42] State Estimation and Fault Detection for Nonlinear Dynamic Systems
    Lu, Baohua
    Yan, Liping
    Chen, Hongxue
    Xia, Yuanqing
    Fu, Mengyin
    Xiao, Bo
    [J]. 2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 6038 - 6043
  • [43] A parameter estimation approach to state observation of nonlinear systems
    Ortega, Romeo
    Bobtsov, Alexey
    Pyrkin, Anton
    Aranovskiy, Stanislav
    [J]. SYSTEMS & CONTROL LETTERS, 2015, 85 : 84 - 94
  • [44] STATE ESTIMATION OF POLYNOMIAL TYPE NONLINEAR DIFFERENTIAL SYSTEMS
    ORAVA, J
    [J]. ACTA POLYTECHNICA SCANDINAVICA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 1975, (26): : 1 - 49
  • [45] Nonlinear state estimation for uncertain systems with an integral constraint
    James, MR
    Petersen, IR
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (11) : 2926 - 2937
  • [46] Progressive bayes: A new framework for nonlinear state estimation
    Hanebeck, UD
    Briechle, K
    Rauh, A
    [J]. MULTISENSOR, MULTISOURCE INFORMATION FUSION: ARCHITECTURES, ALGORITHMS, AND APPLICATIONS 2003, 2003, 5099 : 256 - 267
  • [47] Online state estimation for discrete nonlinear dynamic systems with nonlinear noise and interference
    Demirbas, Kerim
    [J]. JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2015, 352 (01): : 216 - 235
  • [48] Simultaneous input and state estimation for nonlinear systems with applications to flow field estimation
    Fang, Huazhen
    de Callafon, Raymond A.
    Cortes, Jorge
    [J]. AUTOMATICA, 2013, 49 (09) : 2805 - 2812
  • [49] NEW MODELS FOR POWER SYSTEMS STATE ESTIMATION
    Ivanov, Ovidiu
    Gavrilas, Mihai
    Vicol, Bogdan
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2012, 74 (01): : 181 - 188
  • [50] Optimal state estimation and fault diagnosis for a class of nonlinear systems
    Kazemi, Hamed
    Yazdizadeh, Alireza
    [J]. IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (02) : 517 - 526