Adsorption behavior of metal-organic frameworks: From single simulation, high-throughput computational screening to machine learning

被引:22
|
作者
Yan, Yaling [1 ]
Zhang, Lulu [1 ]
Li, Shuhua [1 ]
Liang, Hong [1 ]
Qiao, Zhiwei [1 ]
机构
[1] Guangzhou Univ, Sch Chem & Chem Engn, Guangzhou Key Lab New Energy & Green Catalysis, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic frameworks; Simulation; High-throughput computational screening; Machine learning; STRUCTURE-PROPERTY RELATIONSHIP; CARBON-DIOXIDE SEPARATION; CHIRAL STATIONARY PHASES; MONTE-CARLO SIMULATIONS; POROUS MATERIALS; MEMBRANE SEPARATION; MOLECULAR-DYNAMICS; HYDROGEN STORAGE; CO2; NETWORKS;
D O I
10.1016/j.commatsci.2021.110383
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, the development and application of porous materials have attracted increasing attention, and metalorganic frameworks (MOFs) have become ?stars? in the emerging material field because of their high porosities and ultra-high specific surface areas. In this review, the calculated works of MOFs in this field in the past ten years were summarized, especially for MOF adsorbents. With the continuous growth of the number of adsorbent materials, simulations have gradually transitioned from the single simulation, high-throughput computational screening (HTCS) to machine-learning (ML)-assisted HTCS. The purpose of this paper is to sort out the research progress and current ideas for the adsorption simulations of MOFs. Finally, we highlight the bottlenecks and challenges for the future commercialization of HTCS based on ML and the ML-assisted HTCS methods that are suitable for solving the research problems in this field. We also speculate about the future development directions of this field, hoping to promote the practical application of porous adsorbents.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks
    Li, Wei
    Liang, Tiangui
    Lin, Yuanchuang
    Wu, Weixiong
    Li, Song
    PROGRESS IN CHEMISTRY, 2022, 34 (12) : 2619 - 2637
  • [2] High-throughput computational screening of metal-organic frameworks
    Colon, Yamil J.
    Snurr, Randall Q.
    CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 5735 - 5749
  • [3] Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks
    Shi, Zenan
    Yang, Wenyuan
    Deng, Xiaomei
    Cai, Chengzhi
    Yan, Yaling
    Liang, Hong
    Liu, Zili
    Qiao, Zhiwei
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2020, 5 (04) : 725 - 742
  • [4] High-Throughput Computational Screening and Machine Learning Model for Accelerated Metal-Organic Frameworks Discovery in Toluene Vapor Adsorption
    Liu, Xiaohua
    Wang, Ruihan
    Wang, Xin
    Xu, Dingguo
    JOURNAL OF PHYSICAL CHEMISTRY C, 2023, 127 (23): : 11268 - 11282
  • [5] Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air
    Yuan, Xueying
    Deng, Xiaomei
    Cai, Chengzhi
    Shi, Zenan
    Liang, Hong
    Li, Shuhua
    Qiao, Zhiwei
    GREEN ENERGY & ENVIRONMENT, 2021, 6 (05) : 759 - 770
  • [6] Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening
    Bian Lei
    Li Wei
    Wei Zhenzhen
    Liu Xiaowei
    Li Song
    ACTA CHIMICA SINICA, 2018, 76 (04) : 303 - 310
  • [7] High-Throughput Computational Screening of Metal-Organic Frameworks for Thiol Capture
    Qiao, Zhiwei
    Xu, Qisong
    Cheetham, Anthony K.
    Jiang, Jianwen
    JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (40): : 22208 - 22215
  • [8] Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks
    Liu Zhilu
    Li Wei
    Liu Hao
    Zhuang Xudong
    Li Song
    ACTA CHIMICA SINICA, 2019, 77 (04) : 323 - 339
  • [9] High-throughput generation and screening of metal-organic frameworks for adsorption applications
    Wilmer, Christopher E.
    Sikora, Benjamin J.
    Colon, Yamil J.
    Kim, Ki Chul
    Fairen-Jimenez, David
    Greenfield, Michael L.
    Snurr, Randall Q.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [10] Computational discovery of metal-organic frameworks for hydrogen storage: combining high-throughput screening, machine learning, and experimental demonstration
    Siegel, Donald
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256