High-throughput computational screening of metal-organic frameworks

被引:331
|
作者
Colon, Yamil J. [1 ]
Snurr, Randall Q. [1 ]
机构
[1] Northwestern Univ, Dept Chem & Biol Engn, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
STRUCTURE-PROPERTY RELATIONSHIPS; CARBON-DIOXIDE SEPARATION; MONTE-CARLO METHOD; IN-SILICO DESIGN; HYDROGEN STORAGE; POROUS MATERIALS; CHARGE EQUILIBRATION; SURFACE-AREA; GEOMETRIC ANALYSIS; METHANE STORAGE;
D O I
10.1039/c4cs00070f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There is an almost unlimited number of metal-organic frameworks (MOFs). This creates exciting opportunities but also poses a problem: how do we quickly find the best MOFs for a given application? Molecular simulations have advanced sufficiently that many MOF properties - especially structural and gas adsorption properties - can be predicted computationally, and molecular modeling techniques are now used increasingly to guide the synthesis of new MOFs. With increasing computational power and improved simulation algorithms, it has become possible to conduct high-throughput computational screening to identify promising MOF structures and uncover structure-property relations. We review these efforts and discuss future directions in this new field.
引用
收藏
页码:5735 / 5749
页数:15
相关论文
共 50 条
  • [1] High-Throughput Computational Screening of Metal-Organic Frameworks for Thiol Capture
    Qiao, Zhiwei
    Xu, Qisong
    Cheetham, Anthony K.
    Jiang, Jianwen
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (40): : 22208 - 22215
  • [2] Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks
    Liu Zhilu
    Li Wei
    Liu Hao
    Zhuang Xudong
    Li Song
    [J]. ACTA CHIMICA SINICA, 2019, 77 (04) : 323 - 339
  • [3] Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks
    Li, Wei
    Liang, Tiangui
    Lin, Yuanchuang
    Wu, Weixiong
    Li, Song
    [J]. PROGRESS IN CHEMISTRY, 2022, 34 (12) : 2619 - 2637
  • [4] High-throughput screening of metal-organic frameworks for hydrogen purification
    Wang, Shihui
    Cheng, Min
    Luo, Lei
    Ji, Xu
    Liu, Chong
    Bi, Kexin
    Zhou, Li
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 451
  • [5] Diversifying Databases of Metal Organic Frameworks for High-Throughput Computational Screening
    Majumdar, Sauradeep
    Moosavi, Seyed Mohamad
    Jablonka, Kevin Maik
    Ongari, Daniele
    Smit, Berend
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (51) : 61004 - 61014
  • [6] High-throughput computational screening of metal-organic frameworks with topological diversity for hexane isomer separations
    Peng, Liang
    Zhu, Qiao
    Wu, Pinglian
    Wu, Xuanjun
    Cai, Weiquan
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (16) : 8508 - 8516
  • [7] Formaldehyde Adsorption Performance of Selected Metal-Organic Frameworks from High-throughput Computational Screening
    Bian Lei
    Li Wei
    Wei Zhenzhen
    Liu Xiaowei
    Li Song
    [J]. ACTA CHIMICA SINICA, 2018, 76 (04) : 303 - 310
  • [8] High-Throughput Computational Screening of Metal-Organic Frameworks for the Separation of Methane from Ethane and Propane
    Ponraj, Yadava Krishnan
    Borah, Bhaskarjyoti
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2021, 125 (03): : 1839 - 1854
  • [9] Machine-learning-assisted high-throughput computational screening of high performance metal-organic frameworks
    Shi, Zenan
    Yang, Wenyuan
    Deng, Xiaomei
    Cai, Chengzhi
    Yan, Yaling
    Liang, Hong
    Liu, Zili
    Qiao, Zhiwei
    [J]. MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2020, 5 (04) : 725 - 742
  • [10] High-throughput screening of hypothetical metal-organic frameworks for thermal conductivity
    Islamov, Meiirbek
    Babaei, Hasan
    Anderson, Ryther
    Sezginel, Kutay B.
    Long, Jeffrey R.
    McGaughey, Alan J. H.
    Gomez-Gualdron, Diego A.
    Wilmer, Christopher E.
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)