Estimation of parameters of the Gompertz distribution using the least squares method

被引:44
|
作者
Wu, JW [1 ]
Hung, WL
Tsai, CH
机构
[1] Tamkang Univ, Dept Stat, Tamsui 25137, Taiwan
[2] Natl Hsinchu Teachers Coll, Dept Math, Hsinchu, Taiwan
关键词
Gompertz distribution; least squares estimate; maximum likelihood estimate; first failure-censored; series system;
D O I
10.1016/j.amc.2003.08.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Gompertz distribution has been used to describe human mortality and establish actuarial tables. Recently, this distribution has been again studied by some authors. The maximum likelihood estimates for the parameters of the Gompertz distribution has been discussed by Garg et al. [J. R. Statist. Soc. C 19 (1970) 152]. The purpose of this paper is to propose unweighted and weighted least squares estimates for parameters of the Gompertz distribution under the complete data and the first failure-censored data (series systems; see [J. Statist. Comput. Simulat. 52 (1995) 337]). A simulation study is carried out to compare the proposed estimators and the maximum likelihood estimators. Results of the simulation studies show that the performance of the weighted least squares estimators is acceptable. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:133 / 147
页数:15
相关论文
共 50 条
  • [21] Least Squares Method of Estimation Using Bernstein Polynomials for Density Estimation
    Thongjaem, Piyada
    Ghosh, Sujit K.
    Budsaba, Kamon
    THAILAND STATISTICIAN, 2013, 11 (01): : 45 - 65
  • [22] Estimation of conduction velocity distribution by regularized-least-squares method
    Tu, YX
    Wernsdörfer, A
    Honda, S
    Tomita, Y
    (SYSID'97): SYSTEM IDENTIFICATION, VOLS 1-3, 1998, : 1253 - 1258
  • [23] Estimation of conduction velocity distribution by regularized-least- squares method
    Dept. of Instrumentation Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan
    IEEE TRANS. BIOMED. ENG., 11 (1102-1106):
  • [24] Estimation of conduction velocity distribution by regularized-least-squares method
    Tu, YX
    Wernsdorfer, A
    Honda, S
    Tomita, Y
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (11) : 1102 - 1106
  • [25] On weighted least squares estimation for parameters of the two-parameter Weibull distribution
    Zhang, L. F.
    Xie, M.
    Tang, L. C.
    TWELFTH ISSAT INTERNATIONAL CONFERENCE RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2006, : 318 - +
  • [26] Recognition of Branch Insulation Parameters in Coal Mine Distribution Network using Least Squares Method
    Zhao, Jianwen
    ADVANCED DESIGNS AND RESEARCHES FOR MANUFACTURING, PTS 1-3, 2013, 605-607 : 851 - 854
  • [27] Estimation of Pulse Parameters by Autoconvolution and Least Squares
    Chan, Y. T.
    Lee, B. H.
    Inkol, R.
    Chan, F.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2010, 46 (01) : 363 - 374
  • [28] Least squares estimation of parameters in implicit models
    Lisy, JM
    Simon, P
    Bafrncová, S
    Graczová, E
    COMPUTERS & CHEMISTRY, 1999, 23 (06): : 587 - 595
  • [29] ESTIMATION OF PARAMETERS FOR NONLINEAR LEAST SQUARES ANALYSIS
    KITTRELL, JR
    MEZAKI, R
    WATSON, CC
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1965, 57 (12): : 19 - &
  • [30] Unweighted least squares estimation of weibull parameters
    Hossain, A
    Howlader, HA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 54 (1-3) : 265 - 271