Chebyshev-Legendre super spectral viscosity method for nonlinear conservation laws

被引:65
|
作者
Ma, HP [1 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Shanghai Univ Sci & Technol, Dept Math, Shanghai 201800, Peoples R China
关键词
conservation laws; Chebyshev-Legendre method; super spectral viscosity; convergence;
D O I
10.1137/S0036142995293912
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a super spectral viscosity method using the Chebyshev differential operator of high order D-s = (root 1-x(2) partial derivative(x))(s) is developed for nonlinear conservation laws. The boundary conditions are treated by a penalty method. Compared with the second-order spectral viscosity method, the super one is much weaker while still guaranteeing the convergence of the bounded solution of the Chebyshev-Galerkin, Chebyshev collocation, or Legendre-Galerkin approximations to nonlinear conservation laws, which is proved by compensated compactness arguments.
引用
收藏
页码:893 / 908
页数:16
相关论文
共 50 条
  • [31] ADAPTIVE SPECTRAL VISCOSITY FOR HYPERBOLIC CONSERVATION LAWS
    Tadmor, Eitan
    Waagan, Knut
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02): : A993 - A1009
  • [32] Numerical simulation of fluid transients by Chebyshev super spectral viscosity method for propellant lines
    Chen, Hong-Yu
    Liu, Hong-Jun
    Chen, Jian-Hua
    Liu, Shang
    Tuijin Jishu/Journal of Propulsion Technology, 2012, 33 (05): : 804 - 808
  • [33] Enhanced spectral viscosity approximations for conservation laws
    Gelb, A
    Tadmor, E
    APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) : 3 - 21
  • [34] Spectral Element Viscosity Methods for Nonlinear Conservation Laws on the Semi-Infinite Interval
    Liang Jiang (Department of Mathematics
    Numerical Mathematics:A Journal of Chinese Universities(English Series), 2007, (02) : 112 - 130
  • [35] A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system
    Manzini, G.
    Delzanno, G. L.
    Vencels, J.
    Markidis, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 317 : 82 - 107
  • [36] Numerical approximation of Levy-Feller fractional diffusion equation via Chebyshev-Legendre collocation method
    Sweilam, N. H.
    Abou Hasan, M. M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [37] A space-time smooth artificial viscosity method for nonlinear conservation laws
    Reisner, J.
    Serencsa, J.
    Shkoller, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 912 - 933
  • [38] Numerical approximation of Lévy-Feller fractional diffusion equation via Chebyshev-Legendre collocation method
    N. H. Sweilam
    M. M. Abou Hasan
    The European Physical Journal Plus, 131
  • [39] LEGENDRE-PETROV-GALERKIN CHEBYSHEV SPECTRAL COLLOCATION METHOD FOR SECOND-ORDER NONLINEAR DIFFERENTIAL EQUATIONS
    Gao, Qiyi
    Wu, Hua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (03): : 2246 - 2268
  • [40] SPECTRAL VISCOSITY APPROXIMATIONS TO MULTIDIMENSIONAL SCALAR CONSERVATION-LAWS
    CHEN, GQ
    DU, Q
    TADMOR, E
    MATHEMATICS OF COMPUTATION, 1993, 61 (204) : 629 - 643