Robust kernel principal component analysis with optimal mean

被引:20
|
作者
Li, Pei
Zhang, Wenlin
Lu, Chengjun
Zhang, Rui [1 ]
Li, Xuelong
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
关键词
Kernel principal component analysis; Robust principal component analysis; Optimal mean;
D O I
10.1016/j.neunet.2022.05.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The kernel principal component analysis (KPCA) serves as an efficient approach for dimensionality reduction. However, the KPCA method is sensitive to the outliers since the large square errors tend to dominate the loss of KPCA. To strengthen the robustness of KPCA method, we propose a novel robust kernel principal component analysis with optimal mean (RKPCA-OM) method. RKPCA-OM not only possesses stronger robustness for outliers than the conventional KPCA method, but also can eliminate the optimal mean automatically. What is more, the theoretical proof proves the convergence of the algorithm to guarantee that the optimal subspaces and means are obtained. Lastly, exhaustive experimental results verify the superiority of our method. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [31] A ROBUST PRINCIPAL COMPONENT ANALYSIS
    RUYMGAART, FH
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1981, 11 (04) : 485 - 497
  • [32] A robust principal component analysis
    Ibazizen, M
    Dauxois, J
    [J]. STATISTICS, 2003, 37 (01) : 73 - 83
  • [33] Robust Palm Print Verification System Based on Evolution of Kernel Principal Component Analysis
    Ibrahim, Salwani
    Jaafar, Haryati
    Ramli, Dzati Athiar
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM COMPUTING AND ENGINEERING, 2014, : 202 - 207
  • [34] Supervised kernel principal component analysis for forecasting
    Fang, Puyi
    Gao, Zhaoxing
    Tsay, Ruey S.
    [J]. FINANCE RESEARCH LETTERS, 2023, 58
  • [35] Statistical properties of kernel principal component analysis
    Laurent Zwald
    [J]. Machine Learning, 2007, 66 : 295 - 295
  • [36] Statistical properties of kernel principal component analysis
    Blanchard, Gilles
    Bousquet, Olivier
    Zwald, Laurent
    [J]. MACHINE LEARNING, 2007, 66 (2-3) : 259 - 294
  • [37] Statistical properties of kernel principal component analysis
    Zwald, L
    Bousquet, O
    Blanchard, G
    [J]. LEARNING THEORY, PROCEEDINGS, 2004, 3120 : 594 - 608
  • [38] Fast iterative kernel principal component analysis
    Guenter, Simon
    Schraudolph, Nicol N.
    Vishwanathan, S. V. N.
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2007, 8 : 1893 - 1918
  • [39] Texture classification with kernel principal component analysis
    Kim, KI
    Jung, K
    Park, SH
    Kim, HJ
    [J]. ELECTRONICS LETTERS, 2000, 36 (12) : 1021 - 1022
  • [40] Kernel principal component analysis for texture classification
    Kim, KI
    Park, SH
    Kim, HJ
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2001, 8 (02) : 39 - 41