Robust kernel principal component analysis with optimal mean

被引:20
|
作者
Li, Pei
Zhang, Wenlin
Lu, Chengjun
Zhang, Rui [1 ]
Li, Xuelong
机构
[1] Northwestern Polytech Univ, Sch Artificial Intelligence Opt & Elect iOPEN, Xian 710072, Shaanxi, Peoples R China
关键词
Kernel principal component analysis; Robust principal component analysis; Optimal mean;
D O I
10.1016/j.neunet.2022.05.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The kernel principal component analysis (KPCA) serves as an efficient approach for dimensionality reduction. However, the KPCA method is sensitive to the outliers since the large square errors tend to dominate the loss of KPCA. To strengthen the robustness of KPCA method, we propose a novel robust kernel principal component analysis with optimal mean (RKPCA-OM) method. RKPCA-OM not only possesses stronger robustness for outliers than the conventional KPCA method, but also can eliminate the optimal mean automatically. What is more, the theoretical proof proves the convergence of the algorithm to guarantee that the optimal subspaces and means are obtained. Lastly, exhaustive experimental results verify the superiority of our method. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页码:347 / 352
页数:6
相关论文
共 50 条
  • [1] Optimal Mean Robust Principal Component Analysis
    Nie, Feiping
    Yuan, Jianjun
    Huang, Heng
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 32 (CYCLE 2), 2014, 32 : 1062 - 1070
  • [2] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    [J]. NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [3] Fast Extended Inductive Robust Principal Component Analysis With Optimal Mean
    Yi, Shuangyan
    Nie, Feiping
    Liang, Yongsheng
    Liu, Wei
    He, Zhenyu
    Liao, Qingmin
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (10) : 4812 - 4825
  • [4] Fast Extended Inductive Robust Principal Component Analysis With Optimal Mean
    Yi, Shuangyan
    Nie, Feiping
    Liang, Yongsheng
    Liu, Wei
    He, Zhenyu
    Liao, Qingmin
    [J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34 (10): : 4812 - 4825
  • [5] Robust kernel principal component analysis and classification
    Michiel Debruyne
    Tim Verdonck
    [J]. Advances in Data Analysis and Classification, 2010, 4 : 151 - 167
  • [6] Robust kernel principal component analysis and classification
    Debruyne, Michiel
    Verdonck, Tim
    [J]. ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 151 - 167
  • [7] A note on robust kernel principal component analysis
    Deng, Xinwei
    Yuan, Ming
    Sudjianto, Agus
    [J]. PREDICTION AND DISCOVERY, 2007, 443 : 21 - +
  • [8] Exactly Robust Kernel Principal Component Analysis
    Fan, Jicong
    Chow, Tommy W. S.
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 749 - 761
  • [9] Generalized mean for robust principal component analysis
    Oh, Jiyong
    Kwak, Nojun
    [J]. PATTERN RECOGNITION, 2016, 54 : 116 - 127
  • [10] An iterative algorithm for robust kernel principal component analysis
    Wang, Lei
    Pang, Yan-Wei
    Shen, Dao-Yi
    Yu, Neng-Hai
    [J]. PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 3484 - +