Estimating neighborhood-based stand structure parameters using sampling simulation

被引:0
|
作者
Hui, VGY [1 ]
Albert, M [1 ]
机构
[1] Univ Gottingen, Inst Waldinventur & Waldwachstum, Chinese Acad Forestry, Gottingen, Germany
来源
ALLGEMEINE FORST UND JAGDZEITUNG | 2004年 / 175卷 / 10-11期
关键词
stand structure; stand structure indices; stand inventory; sampling simulation; time studies;
D O I
暂无
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
This paper compares two sampling methods to assess forest stand structure, the,structural group of four" (VG) (fig. 1) and a modified cluster sampling (KG) (fig. 4). The spatial distribution of trees, small scale differences in species mingling, and size differentiation are used to describe stand structure. The target parameters of the inventory are, therefore, the mean uniform angle index (M) over bar, the mean mingling index ($) over bar, the mean measure of dominance (M) over bar, and the mean single tree basal area g (for definitions see fig. 1). As experience shows the estimates of basal area and number of trees per ha are biased when applying VG. We also show that stand structure parameters are not in every case independent of a tree's selection probability which is linked to the tree's growing space (tab. 1). Estimates of the target parameters without bias and a higher precision are expected from the new inventory method KG. Applying sampling simulation KG is compared to VG in six generated stands (fig. 2) and four trial stands (fig. 3). Statistical measures to judge the methods' performances are the frequency of estimates within a defined confidence region rho, the relative bias (eq. 1), and rRMSE (eq. 2). The sampling simulation results are presented in figures 5 to 8. KG has a clear advantage over VG in estimating the uniform angle index (fig. 5) and the measure of dominance (fig. 7) in the stands investigated. Both inventory methods show similar precision in estimating the mingling index (fig. 6). For estimating the mean single tree basal area (g) over bar with equal precision as VG the modified method KG is more time consuming (fig. 8). To enhance the efficiency of KG adjustments of the method by including diameter measurements of neighboring trees seem promising.
引用
收藏
页码:199 / 209
页数:11
相关论文
共 50 条
  • [41] ESTIMATING THE PARAMETERS OF SYSTEMATIC CLUSTER SAMPLING BY MODEL-BASED INFERENCE
    KANGAS, A
    SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 1993, 8 (04) : 571 - 582
  • [42] Unsupervised SAR Image Segmentation Using Higher Order Neighborhood-Based Triplet Markov Fields Model
    Wang, Fan
    Wu, Yan
    Zhang, Qiang
    Zhao, Wei
    Li, Ming
    Liao, Guisheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (08): : 5193 - 5205
  • [43] Partial Multilabel Learning Using Fuzzy Neighborhood-Based Ball Clustering and Kernel Extreme Learning Machine
    Sun, Lin
    Wang, Tianxiang
    Ding, Weiping
    Xu, Jiucheng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (07) : 2277 - 2291
  • [44] ESTIMATING SPATIAL STRUCTURE PARAMETERS USING EXTRACTION REPLICAS
    HORALEK, V
    KOVOVE MATERIALY-METALLIC MATERIALS, 1978, 16 (04): : 500 - 509
  • [45] RELATIONSHIP AMONG MANGROVE STAND STRUCTURE PARAMETERS IN ESTIMATING THE COMMUNITY SCALE OF ABOVEGROUND CARBON STOCK
    Andiani, Anak Agung Eka
    Karang, I. Wayan Gede Astawa
    Putra, I. Nyoman Giri
    Dharmawan, I. Wayan Eka
    JURNAL ILMU DAN TEKNOLOGI KELAUTAN TROPIS, 2021, 13 (03): : 485 - 498
  • [46] Estimating parameters for psychometric functions using the four-point sampling method
    Lam, CF
    Dubno, JR
    Ahlstrom, JB
    He, NJ
    Mills, JH
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1997, 102 (06): : 3697 - 3703
  • [47] Classical Simulation of Boson Sampling Based on Graph Structure
    Oh, Changhun
    Lim, Youngrong
    Fefferman, Bill
    Jiang, Liang
    PHYSICAL REVIEW LETTERS, 2022, 128 (19)
  • [48] Estimating forest stand characteristics in a coastal plain forest plantation based on vertical structure profile parameters derived from ALS data
    Liu H.
    Zhang Z.
    Cao L.
    Cao, Lin (lincao@njfu.edu.cn), 2018, Science Press (22): : 872 - 888
  • [49] SIMULATION OF WATER FLUXES USING DIFFERENT METHODS FOR ESTIMATING SOIL PARAMETERS
    DIEKKRUGER, B
    ARNING, M
    ECOLOGICAL MODELLING, 1995, 81 (1-3) : 83 - 95