Homoclinic solutions for nonautonomous second-order Hamiltonian systems with a coercive potential
被引:11
|
作者:
Lv, Xiang
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Lv, Xiang
[1
]
Lu, Shiping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R ChinaAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Lu, Shiping
[1
]
Yan, Ping
论文数: 0引用数: 0
h-index: 0
机构:
Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Univ Helsinki, Dept Math & Stat, Rolf Nevanlinna Inst, FIN-00014 Helsinki, FinlandAnhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
Yan, Ping
[1
,2
]
机构:
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
[2] Univ Helsinki, Dept Math & Stat, Rolf Nevanlinna Inst, FIN-00014 Helsinki, Finland
A new result for the existence of homoclinic orbits is obtained for the second-order Hamiltonian system u(t) = del F (t, u(t)) + f(t), where t is an element of R, u is an element of R(n), F is an element of C(1)(R x R(n), R) is T-periodic with respect to t, T > 0 and f : R -> R(n) is a continuous and bounded function. This result generalizes and improves some known results in the previous literature. (C) 2009 Elsevier Ltd. All rights reserved.
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
Tang, X. H.
Xiao, Li
论文数: 0引用数: 0
h-index: 0
机构:
Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R ChinaCent S Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
机构:
Department of Mathematics, Shanghai Normal University, Shanghai 200234, ChinaDepartment of Mathematics, Shanghai Normal University, Shanghai 200234, China
Lv, Xiang
Lu, Shiping
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, Anhui Normal University, Wuhu, Anhui 241000, ChinaDepartment of Mathematics, Shanghai Normal University, Shanghai 200234, China