Surface effects on the magnetic properties of ultrafine cobalt particles

被引:493
|
作者
Respaud, M
Broto, JM
Rakoto, H
Fert, AR
Thomas, L
Barbara, B
Verelst, M
Snoeck, E
Lecante, P
Mosset, A
Osuna, J
Ould-Ely, T
Amiens, C
Chaudret, B
机构
[1] Inst Natl Sci Appl, Phys Mat Condensee Lab, F-31077 Toulouse, France
[2] Inst Natl Sci Appl, Serv Natl Champs Magnet Pulses, F-31077 Toulouse, France
[3] CNRS, Lab Louis Neel, F-38042 Grenoble, France
[4] CNRS, CEMES, F-31055 Toulouse, France
[5] CNRS, Chim Coordinat Lab, F-31077 Toulouse, France
来源
PHYSICAL REVIEW B | 1998年 / 57卷 / 05期
关键词
D O I
10.1103/PhysRevB.57.2925
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Monodispersed nanoparticles of cobalt have been prepared by an original method using the decomposition under hydrogen of an organometallic precursor in the presence of a stabilizing polymer. Two colloids (Coll-I and Coll-II) have been obtained by changing the organometallic concentration in the polymer. Observation by high-resolution transmission electronic microscopy (HRTEM) showed Co particles well isolated and regularly dispersed in the polymer with a very narrow size distribution centered around 1.5 nm (Coll-I) and 2 nm (Coll-II) diameter. These particles are superparamagnetic above the blocking temperature 9 K (Coll-I) and 13.5 K (Coll-II). The particle size deduced from the analyses of the magnetic susceptibilities and magnetization curves are consistent with those measured by HRTEM. Magnetization at 5 K seems to saturate in fields up to 5 T leading to an enhanced mean magnetic moment per atom for both samples, where [mu(Co)]=194+/-0.05 mu(B) for the smallest particles. High-field magnetization measurements, up to 35 T, increases nearly linearly with the applied field. This is equivalent to an increase of the mean magnetic moment with [mu(Co)]=2.1+/-0.1 mu(B) at 35 T for the smallest particles. The effective magnetic anisotropies are found to be larger than that of the bulk materials and decrease with increasing particle size. This set of data allows us to conclude that the enhanced magnetization, its increase with applied magnetic field, and the enhanced effective magnetic anisotropy an associated with the large influence of the surface atoms and are more significant with decreasing size.
引用
收藏
页码:2925 / 2935
页数:11
相关论文
共 50 条
  • [21] Oxidation behavior and magnetic properties of metallic ultrafine particles
    Zhao, XQ
    Liu, BX
    Liang, Y
    Hu, ZQ
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1996, 164 (03) : 401 - 410
  • [22] Effects of physicochemical properties of ultrafine particles on the performance of an ultrafine particle concentrator
    Gupta, T
    Demokritou, P
    Koutrakis, P
    AEROSOL SCIENCE AND TECHNOLOGY, 2004, 38 : 37 - 45
  • [23] The surface properties and photocatalytic activities of ZnO ultrafine particles
    Jing, LQ
    Xu, ZL
    Sun, XJ
    Shang, J
    Cai, WM
    APPLIED SURFACE SCIENCE, 2001, 180 (3-4) : 308 - 314
  • [24] THE OBSERVATION OF MULTIAXIAL ANISOTROPY IN ULTRAFINE COBALT FERRITE PARTICLES USED IN MAGNETIC FLUIDS
    DAVIES, KJ
    WELLS, S
    UPADHYAY, RV
    CHARLES, SW
    OGRADY, K
    ELHILO, M
    MEAZ, T
    MORUP, S
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1995, 149 (1-2) : 14 - 18
  • [25] Magnetic properties of ferrofluid with cobalt ferrite particles
    Didukh, P
    Slawska-Waniewska, A
    Greneche, JM
    Fannin, PC
    ACTA PHYSICA POLONICA A, 2000, 97 (03) : 587 - 590
  • [26] PREPARATION AND MAGNETIC PROPERTIES OF COBALT ALLOY PARTICLES
    HARADA, S
    YAMANASHI, T
    UGAJI, M
    IEEE TRANSACTIONS ON MAGNETICS, 1972, MAG8 (03) : 468 - 470
  • [27] PREPARATION AND MAGNETIC PROPERTIES OF COLLOIDAL COBALT PARTICLES
    THOMAS, JR
    JOURNAL OF APPLIED PHYSICS, 1966, 37 (07) : 2914 - &
  • [28] MAGNETIC PROPERTIES OF SMALL AEROSOL PARTICLES OF COBALT
    PETROV, AE
    PETINOV, VI
    PLATE, IV
    FEDOROVA, EA
    GEN, MY
    SOVIET PHYSICS SOLID STATE,USSR, 1971, 13 (06): : 1318 - +
  • [29] MAGNETIC-PROPERTIES OF FE-CR ULTRAFINE PARTICLES
    WEI, G
    HUA, L
    ZHAO, ZR
    HADJIPANAYIS, GC
    PAPAEFTHYMIOU, VP
    KOSTIKAS, A
    SIMOPOUOS, A
    JOURNAL OF APPLIED PHYSICS, 1991, 70 (10) : 5900 - 5902
  • [30] Structure and magnetic properties of the oxide layers on iron ultrafine particles
    Zhao, XQ
    Liu, BX
    Liang, Y
    Hu, ZQ
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1997, 64 (05): : 483 - 486