Thermoelectric properties of TiS2 mechanically alloyed compounds

被引:37
|
作者
Bourges, Cedric [1 ]
Barbier, Tristan [1 ]
Guelou, Gabin [2 ]
Vaqueiro, Paz [2 ]
Powell, Anthony V. [2 ]
Lebedev, Oleg I. [1 ]
Barrier, Nicolas [1 ]
Kinemuchi, Yoshiaki [3 ]
Guilmeau, Emmanuel [1 ]
机构
[1] ENSICAEN, Lab CRISMAT, CNRS, UMR 6508, 6 Blvd Marechal Juin, F-14050 Caen 04, France
[2] Univ Reading, Dept Chem, Reading RG6 6AD, Berks, England
[3] Natl Inst Adv Ind Sci & Technol, Nagoya, Aichi 4638560, Japan
基金
英国工程与自然科学研究理事会;
关键词
Thermoelectric; Titanium disulfide; Mechanical alloying; THERMAL-CONDUCTIVITY; TRANSPORT-PROPERTIES; INTERCALATION; BULK; REFINEMENT;
D O I
10.1016/j.jeurceramsoc.2015.11.025
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bulk polycrystalline samples in the series T1-xNbxS2 (0 <= x <= 0.075) were prepared using mechanical alloying synthesis and spark plasma sintering. X-ray diffraction analysis coupled with high resolution transmission electron microscopy indicates the formation of trigonal TiS2 by high energy ball-milling. The as-synthesized particles consist of pseudo-ordered TiS2 domains of around 20-50 nm, joined by bent atomic planes. This bottom-up approach leads, after spark plasma sintering, to homogeneous solid solutions, with a niobium solubility limit of x= 0.075. Microstructural observations evidence the formation of small crystallites in the bulk compounds with a high density of stacking faults. The large grain boundary concentration coupled with the presence of planar defects, leads to a substantial decrease in the thermal conductivity to 1.8 W/mK at 700 K. This enables the figure of merit to reach ZT = 0.3 at 700 K for x= 0.05, despite the lower electron mobility in mechanically alloyed samples due to small crystallite grain size and structural defects. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1183 / 1189
页数:7
相关论文
共 50 条
  • [21] Structural analysis and thermoelectric properties of mechanically alloyed colusites
    Bourges, Cedric
    Gilmas, Margaux
    Lemoine, Pierric
    Mordvinova, Natalia E.
    Lebedev, Oleg I.
    Hug, Eric
    Nassif, Vivian
    Malaman, Bernard
    Daou, Ramzy
    Guilmeau, Emmanuel
    JOURNAL OF MATERIALS CHEMISTRY C, 2016, 4 (31) : 7455 - 7463
  • [22] Thermoelectric properties of mechanically alloyed Bi–Sb alloys
    R. Martin-Lopez
    A. Dauscher
    H. Scherrer
    J. Hejtmanek
    H. Kenzari
    B. Lenoir
    Applied Physics A, 1999, 68 : 597 - 602
  • [23] A MODEL FOR THE DELIVERABLE CAPACITY OF THE TIS2 ELECTRODE IN A LI/TIS2 CELL
    MAO, Z
    WHITE, RE
    JOURNAL OF POWER SOURCES, 1993, 43 (1-3) : 181 - 191
  • [24] Broadband nonlinear absorption properties of TiS2 nanosheets
    Sun, Yan
    Yuan, Junjie
    Xin, Yi
    Zhao, Zhenyu
    Zhang, Fang
    Xing, Fei
    Fu, Shenggui
    OPTICAL MATERIALS, 2023, 142
  • [25] STOICHIOMETRY DEPENDENCE OF THE TRANSPORT-PROPERTIES OF TIS2
    KLIPSTEIN, PC
    BAGNALL, AG
    LIANG, WY
    MARSEGLIA, EA
    FRIEND, RH
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1981, 14 (28): : 4067 - 4081
  • [26] Structural defects and electronic properties of TiS2 nanotubes
    Enyashin, AN
    Ivanovskii, AL
    INORGANIC MATERIALS, 2005, 41 (10) : 1118 - 1123
  • [27] TRANSPORT-PROPERTIES AND THE SEMICONDUCTING NATURE OF TIS2
    LOGOTHETIS, EM
    KAISER, WJ
    KUKKONEN, CA
    FAILE, SP
    COLELLA, R
    GAMBOLD, J
    PHYSICA B & C, 1980, 99 (1-4): : 193 - 198
  • [28] EFFECTS OF SODIUM INTERCALATION IN TIS2 ON THE ELECTRONIC-STRUCTURE OF A TIS2 SLAB
    WHANGBO, MH
    ROUXEL, J
    TRICHET, L
    INORGANIC CHEMISTRY, 1985, 24 (12) : 1824 - 1827
  • [29] Electronic Properties and Chemical Reactivity of TiS2 Nanoflakes
    Cucinotta, Clotilde S.
    Dolui, Kapildeb
    Pettersson, Henrik
    Ramasse, Quentin M.
    Long, Edmund
    O'Brian, Sean E.
    Nicolosi, Valeria
    Sanvito, Stefano
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (27): : 15707 - 15715
  • [30] TRANSPORT PROPERTIES OF V-SUBSTITUTED TIS2
    LEVYCLEMENT, C
    KATTY, A
    CHANG, AT
    GOROCHOV, O
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1978, 11 (15): : L647 - L651